题目:给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
解释:此题属于动态规划。本来想用回溯,但是测试用例超时了。
1.动态规划就是求dp这个数组中的值,此题首先让dp[i]=i,即i这个数最坏的情况下是由i个最小完全平方数(也就是1)求和组成的。
2.然后依次算出 dp[i减去所有小于等于它的完全平方数]+1和当前dp[i]的最小值,其中+1代表了它减去的那个完全平方数占的1位。
class Solution {
public int numSquares(int n) {
int [] dp=new int[n+1]; //dp数组默认初始化为0
for(int i=1;i<=n;i++){
dp[i]=i; //首先让每一位i,都等于i个最小的完全平方数(1)相加。例如(3=1+1+1)
for(int j=1;i-j*j>=0;j++){//然后通过for循环,依次的让i减去它的所有完全平方数j*j
dp[i]=Math.min(dp[i],dp[i-j*j]+1);//dp[i-j*j]+1的含义是:首先让i这个数减去j*j,这是一次,然后加上dp[i-j*j],由于i-j*j肯定小于i此时的dp[i-j*j]代表的是i-j*j这个数最少能让几个完全平方数组合成
}
}
return dp[n];//dp[n]即为n这个数最少能够由几个完全平方数组成
}
}