深度学习
文章平均质量分 97
lechuan_dafo
这个作者很懒,什么都没留下…
展开
-
【深度学习】卷积神经网络CNN以及池化层的理解与运用
前言目录前言1 卷积神经网络 CNN1.1 理论理解1.2 实践理解1.2.1 tensorflow 上CNN使用样例1.2.2 keras 上CNN使用样例2 池化层2.1 理论理解2.2 实践理解2.2.1 tensorflow 上池化层使用样例2.2.2 keras 上池化层使用样例3 基于Keras的分类问题实践3.1 数据集及问题描述3.2 核心代码3.3 实验结果3.4 完整代码1 卷积神经网络 CNN1.1 理论理解 CNN出现已有非常长的历史了,直接拿已有的解释性文章来进行参考,这原创 2020-06-24 16:47:57 · 1839 阅读 · 0 评论 -
【深度学习】 Attention机制的几种实现方法总结(基于Keras框架)
说明 在讲解了Dense+Attention以及LSTM+Attention时,还是使用了别人的代码,因此很多同学对一些地方仍有不够清晰的认识,在这里分享下自己的经验,并基于实践重新设计了实验。这是本人在Attention实践后的经验之谈,所讲不一定完全正确,欢迎讨论。目录说明1 前情提要1.1 参数设定1.2 数据集生成2 模型构建2.1 总体构建2.1.1 搭建模型2.1.2 获取注意力2.1.3 训练模型并可视化注意力3 注意力机制实现3.1 Baseline3.2 第一种Attention机制原创 2020-06-09 18:27:43 · 11926 阅读 · 13 评论 -
【深度学习】用Keras实现word2vec的CBOW模型
前言 尽管gensim里的word2vec已经非常好用,但用别人的模型始终难以直接解决自己的问题,于是去搜有没有直接能用的Keras版,找到了两版,分别为:版本1:keras训练word2vec代码版本2:【不可思议的Word2Vec】6. Keras版的Word2Vec 两位写的都很好,版本1代码上可以直接上手,版本2框架更清晰,但两位大佬的数据集都是基于多篇文章的,版本1是从微...原创 2020-01-04 17:26:29 · 2923 阅读 · 1 评论 -
【深度学习】 基于Keras的Attention机制代码实现及剖析——LSTM+Attention
说明大部分代码来源于网上,但网上的代码一下子可能难以入门或因版本原因报错,此处整理后进行详细分析。 参考的代码来源1:Attention mechanism Implementation for Keras.网上大部分代码都源于此,直接使用时注意Keras版本,若版本不对应,在merge处会报错,解决办法为:导入Multiply层并将attention_dense.py第17行的:att...原创 2019-12-11 11:01:56 · 50857 阅读 · 112 评论 -
【深度学习】 基于Keras的Attention机制代码实现及剖析——Dense+Attention
说明大部分代码来源于网上,但网上的代码一下子可能难以入门或因版本原因报错,此处整理后进行详细分析。 参考的代码来源1:Attention mechanism Implementation for Keras.网上大部分代码都源于此,直接使用时注意Keras版本,若版本不对应,在merge处会报错,解决办法为:导入Multiply层并将attention_dense.py第17行的:att...原创 2019-12-09 19:26:24 · 21764 阅读 · 32 评论 -
【深度学习】 Keras 实现Minst数据集上经典网络结构(DeepDense、LeNet、AlexNet、ZFNet)分类
实验简介 本次实验一方面是熟悉Keras 序列式(Sequential)模型的使用,另一方面是复现早期的经典网络结构来学习神经网络搭建的技巧。数据集采用的是熟知的Minst手写识别,框架采用的是tensorflow、Keras,数据集和框架的导入和安装请点击这里。经典的网络结构已有大量博客进行理论分析,这里只给出代码仅供参考,关于神经网络结构的发展,推荐大家看这篇文章。DeepDense ...原创 2019-09-06 14:24:40 · 709 阅读 · 0 评论