Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡工具。Ribbon会自动帮助你基于某种规则(简单轮询、随机连接等),也可以实现自定义的负载均衡算法。
Ribbon源码
负载均衡
-
英文名称:Load Balance,微服务或分布式集群中常用的一种应用
-
简单来说负载均衡就是将用户的请求ping平摊的分配到多个任务上,从而是系统达到HA(高可用)
-
两种负载均衡:
- 集中式LB:偏硬件,服务的消费方和提供方之间使用独立的LB设施,由该设施负责把访问请求以某种策略转发至服务的提供方。
- 进程内LB:偏软件, 将LB逻辑集成到消费方,消费方从服务注册中心指导哪些地址可用,再自己选择一个合适的服务器。
Ribbon初步配置
-
==Ribbon是客户端负载均衡工具!!!
- 加入依赖,因为Riboon需要依赖Eureka运行,所以要同时加入Eureka依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId>
</dependency>
- 对实现类加入@LoadBalanced注解
@Bean
@LoadBalanced
public RestTemplate getRestTemplate() {
return new RestTemplate();
}
}
- 在application.yml文件中配置向注册中心注册,如果是作为消费者模块不提供服务,不应该注册自己
eureka:
client:
service-url:
defaultZone: http://eureka7001.com:7001/eureka/,http://eureka7002.com:7002/eureka/,http://eureka7003.com:7003/eureka/
register-with-eureka: false #作为消费者不提供服务,不应该注册自己
- 主启动类中加入@EnableEurekaClient注解
@SpringBootApplication
@EnableEurekaClient
public class Consumer80_APP {
public static void main(String[] args) {
SpringApplication.run(Consumer80_APP.class,args);
}
}
- 以上步骤1~4完成后即可在controller中直接通过服务名访问系统中的微服务,服务名作为URI
private static final String URL_PREFIX = "http://MICROSERVICECLOUD-DEPT/";
Ribbon负载均衡实现
架构示意图:
实现方法
目标:构建provider集群后consumer通过负载均衡轮询调用在Eureka中注册的服务
- 构建集群,新开两个provider模块,将原provider的代码部分和pom.xml中依赖照搬到新的provider中
- 将原provider中application.yml文件照搬到新provider,并修改端口号,若新的provider使用自己的数据库,则修改数据库信息(其他配置也一样,如修改别名)
- 集群中服务名称必须一致!!!
spring:
application:
name: microservicecloud-dept #同一集群下必须使用同一服务名
- 启动服务,进行测试
总结:
Ribbon其实就是一个软负载均衡的客户端组件,可以和其他需要请求的客户端结合使用。
Ribbon核心组件IRule
IRule:根据特定算法从服务列表中选取一个需要访问的服务
七大方法
IRule是一个接口,七大方法是其自带的落地实现类
- RoundRobinRule:轮询(默认方法)
- RandomRule:随机
- AvailabilityFilteringRule:先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,还有并发的连接数量超过阈值的服务,然后对剩余的服务进行轮询
- WeightedResponseTimeRule:根据平均响应时间计算服务的权重。统计信息不足时会按照轮询,统计信息足够会按照响应的时间选择服务
- RetryRule:正常时按照轮询选择服务,若过程中有服务出现故障,在轮询一定次数后依然故障,则会跳过故障的服务继续轮询。
- BestAvailableRule:先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
- ZoneAvoidanceRule:默认规则,符合判断server所在的区域的性能和server的可用性选择服务
切换规则方法
只需在配置类中配置一个返回具体方法的bean即可
@Bean
public IRule MyRule(){
return new RandomRule();
}
自定义Ribbon负载均衡算法
配置及包位置
- 自定义的Ribbon算法类不能放在主启动类所在的包及子报下(确切来说是不能放在@ComponentScan注解的包及子包下),否则会被全局应用到Ribbon服务中。应该把自定义算法类放在另外新建的包下,且这个类应该是为配置类。(其实与普通切换负载均衡规则类似,只不过是位置不同而已,普通的可以放在主启动类所在的包,自定义的要放在外面的包下)
- 主启动类添加@RibbonClient(name = “微服务名”,configuration = XXX.class)注解指定需要用到负载均衡的微服务名及自定义算法的class对象。
通过修改源代码获得自定义算法(demo)
目标:每个服务调用5次后再进行轮询
package com.Rules;
import com.netflix.client.config.IClientConfig;
import com.netflix.loadbalancer.AbstractLoadBalancerRule;
import com.netflix.loadbalancer.ILoadBalancer;
import com.netflix.loadbalancer.RoundRobinRule;
import com.netflix.loadbalancer.Server;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Configuration;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
public class MyRule extends AbstractLoadBalancerRule {
private AtomicInteger nextServerCyclicCounter;
private static final boolean AVAILABLE_ONLY_SERVERS = true;
private static final boolean ALL_SERVERS = false;
private int total = 0;
private int currentIndex = 0;
private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);
public MyRule() {
nextServerCyclicCounter = new AtomicInteger(0);
}
public MyRule(ILoadBalancer lb) {
this();
setLoadBalancer(lb);
}
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
log.warn("no load balancer");
return null;
}
Server server = null;
int count = 0;
while (server == null && count++ < 10) {
List<Server> reachableServers = lb.getReachableServers();
List<Server> allServers = lb.getAllServers();
int upCount = reachableServers.size();
int serverCount = allServers.size();
if ((upCount == 0) || (serverCount == 0)) {
log.warn("No up servers available from load balancer: " + lb);
return null;
}
if (total > 5) {
total = 0;
int nextServerIndex = incrementAndGetModulo(serverCount);
currentIndex = nextServerIndex;
server = allServers.get(nextServerIndex);
}else {
if (currentIndex>=serverCount) {
currentIndex = 0;
}
server = allServers.get(currentIndex);
total++;
}
if (server == null) {
/* Transient. */
Thread.yield();
continue;
}
if (server.isAlive() && (server.isReadyToServe())) {
return (server);
}
// Next.
server = null;
}
if (count >= 10) {
log.warn("No available alive servers after 10 tries from load balancer: "
+ lb);
}
return server;
}
/**
* Inspired by the implementation of {@link AtomicInteger#incrementAndGet()}.
*
* @param modulo The modulo to bound the value of the counter.
* @return The next value.
*/
private int incrementAndGetModulo(int modulo) {
for (;;) {
int current = nextServerCyclicCounter.get();
int next = (current + 1) % modulo;
if (nextServerCyclicCounter.compareAndSet(current, next))
return next;
}
}
public Server choose(Object key) {
return choose(getLoadBalancer(), key);
}
public void initWithNiwsConfig(IClientConfig clientConfig) {
}
}
个人小结:虽在公司没用这些技术,但学无止境,早晚会用到,哥学的不仅是技术,更是思想。