高精度减法

思路

  • 和高精度加法差不多,值得注意的是
  • 减法的借位处理
  • 相减为负数的处理
  • 前导0的处理

例题:
给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。

#include <iostream>
#include <vector>
using namespace std;
bool comp(vector<int>& num1, vector<int>& num2);
vector<int> substring(vector<int>& num1, vector<int>& num2);
int main()
{
    string num1;
    string num2;
    cin >> num1 >> num2;
    vector<int> A;
    vector<int> B;
    vector<int> C;
    bool signal = false;
    for (int i = num1.size() - 1; i >= 0; i--) A.push_back(num1[i] - '0');
    for (int i = num2.size() - 1; i >= 0; i--) B.push_back(num2[i] - '0');
    if (!comp(A, B))
    {
        C = substring(B, A);
        signal = true;
    }
    else {
        C = substring(A, B);
    }
    if (signal) {
        printf("-");
    }
    for (int i = C.size() - 1; i >= 0; i--) {
        printf("%d", C[i]);
    }
    return 0;
}
//num1 >= num2
bool comp(vector<int>& num1, vector<int>& num2)
{
    if (num1.size() != num2.size()) return (num1.size() > num2.size());
    for (int i = num1.size() - 1; i >= 0; i--)
    {
        if (num1[i] != num2[i]) {
            return num1[i] > num2[i];
        }
    }
    return true;
}

vector<int> substring(vector<int>& num1, vector<int>& num2)
{
    bool signal = false;
    if (!comp(num1, num2))
    {
        return substring(num2, num1);
    }
    int t = 0;
    vector<int> num3{};
    for (int i = 0; i < num1.size(); i++) {
        t = num1[i] - t;
        if (i < num2.size()) t -= num2[i];
        int c = (10 + t) % 10;
        if (t < 0) t = 1;
        else {
            t = 0;
        }
        num3.push_back(c);
    }
    while (num3.size() > 1 && num3.back() == 0) { //前导0的处理
        num3.pop_back();
    }
    return num3;
}

思路:
1.先比较两个数的大小,打的数放参数前面。根据大小判断正负号
2.对于 t = A[i] - B[i] - t; 可以拆为 t = A[i] - t如果B[i]合法,再t -= B[i] 这么两步来做。
3.将相减后t的处理 ,把 t >=0 和 t < 0 用一个式子来表示 t = (t + 10) % 10。

模型:

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值