思路
- 和高精度加法差不多,值得注意的是
- 减法的借位处理
- 相减为负数的处理
- 前导0的处理
例题:
给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。
#include <iostream>
#include <vector>
using namespace std;
bool comp(vector<int>& num1, vector<int>& num2);
vector<int> substring(vector<int>& num1, vector<int>& num2);
int main()
{
string num1;
string num2;
cin >> num1 >> num2;
vector<int> A;
vector<int> B;
vector<int> C;
bool signal = false;
for (int i = num1.size() - 1; i >= 0; i--) A.push_back(num1[i] - '0');
for (int i = num2.size() - 1; i >= 0; i--) B.push_back(num2[i] - '0');
if (!comp(A, B))
{
C = substring(B, A);
signal = true;
}
else {
C = substring(A, B);
}
if (signal) {
printf("-");
}
for (int i = C.size() - 1; i >= 0; i--) {
printf("%d", C[i]);
}
return 0;
}
//num1 >= num2
bool comp(vector<int>& num1, vector<int>& num2)
{
if (num1.size() != num2.size()) return (num1.size() > num2.size());
for (int i = num1.size() - 1; i >= 0; i--)
{
if (num1[i] != num2[i]) {
return num1[i] > num2[i];
}
}
return true;
}
vector<int> substring(vector<int>& num1, vector<int>& num2)
{
bool signal = false;
if (!comp(num1, num2))
{
return substring(num2, num1);
}
int t = 0;
vector<int> num3{};
for (int i = 0; i < num1.size(); i++) {
t = num1[i] - t;
if (i < num2.size()) t -= num2[i];
int c = (10 + t) % 10;
if (t < 0) t = 1;
else {
t = 0;
}
num3.push_back(c);
}
while (num3.size() > 1 && num3.back() == 0) { //前导0的处理
num3.pop_back();
}
return num3;
}
思路:
1.先比较两个数的大小,打的数放参数前面。根据大小判断正负号
2.对于 t = A[i] - B[i] - t; 可以拆为 t = A[i] - t如果B[i]合法,再t -= B[i] 这么两步来做。
3.将相减后t的处理 ,把 t >=0 和 t < 0 用一个式子来表示 t = (t + 10) % 10。
模型:
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0, t = 0; i < A.size(); i ++ )
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}