阿拉灯神阿丁
码龄9年
关注
提问 私信
  • 博客:60,056
    60,056
    总访问量
  • 9
    原创
  • 1,513,488
    排名
  • 33
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-05-05
博客简介:

qq_34896915的博客

查看详细资料
个人成就
  • 获得30次点赞
  • 内容获得3次评论
  • 获得136次收藏
创作历程
  • 9篇
    2017年
成就勋章
TA的专栏
  • 机器学习,决策树,随机森林,信息增益,剪枝
    1篇
  • 机器学习,深度学习,神经网络,CNN,RNN,LSTM
    1篇
  • 算法,面试
    1篇
  • 机器学习
    5篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    tensorflow分类
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

面试算法题解—— 链表中环的入口节点

题目描述一个链表中包含环,请找出该链表的环的入口结点。思路:第一步,找环中相汇点。分别用p1,p2指向链表头部,p1每次走一步,p2每次走二步,直到p1==p2找到在环中的相汇点。第二步,找环的入口。接上步,当p1==p2时,p2所经过节点数为2x,p1所经过节点数为x,设环中有n个节点,p2比p1多走一圈有2x=n+x; n=x;可以看出p1实际走了一个环的步数,再让p2
原创
发布博客 2017.07.17 ·
445 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习——推荐系统 知识点总结

一、什么是推荐系统?概念:一种自动化的工具,可以分析你的历史兴趣,从庞大的库中推荐出喜欢的物品。基本任务:联系用户和物品,解决信息过载的问题。诞生:早在很多年前,科学家门就提出了很多解决方案,代表性的就是分类目录和搜索引擎。雅虎,谷歌。其中分类目录网站:能方便用户根据类别查找网站,但是只能覆盖少量的热门网站,越来越不能满足客户的需求。因此,搜索引擎诞生了。可以让用户根据搜索关键词来找到
原创
发布博客 2017.07.12 ·
3096 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

机器学习——贝叶斯朴素贝叶斯 知识点与面试总结

贝叶斯判定准则:为最小化总体风险,只需在每个样本上选择能使条件风险R(c|x)最小的类别标记: /-------------------------------极大似然估计---------------------------------/估计类的常用策略:先假定其具有某种确定的概率分布形式,再基于训练样本对概率分布的参数进行估计。即概率模型的训练过程就是参数估计过程。参数估计两大学派
原创
发布博客 2017.07.12 ·
6998 阅读 ·
0 点赞 ·
1 评论 ·
15 收藏

机器学习——EM算法 知识点与面试总结

提出:有时候任务中含有一些不能观察到的隐含变量,样本的产生和隐含变量有关,而求模型的参数时一般用最大似然估计,由于隐变量的存在,所以对似然函数参数求导是求不出来的,这时采用EM算法来求导。总结:是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计。两个步骤交替计算:E步:利用当前估计的参数值,求出在该参数下隐含变量的条件概率值(计算对数似然的期望值);M步:结合E步求出的隐含变量
原创
发布博客 2017.07.12 ·
7427 阅读 ·
0 点赞 ·
0 评论 ·
17 收藏

机器学习——生成模型与判别模型 知识点总结

通俗的解释:1)生成模型:(先对数据的联合分布建模,再通过贝叶斯公式计算样本属于各个类别的后验概率)由数据学习联合概率p(x,y),然后求出后验概率p(y|x)作为预测的模型,即:P(y|x)=p(x,y)/p(x)。特点:可以从统计的角度表示数据的分布情况,能反映同类数据本身的相似度。但不关心各类的边界在哪。学习收敛速度更快。存在隐变量时,仍适用。2)判别模型:(直接
原创
发布博客 2017.06.27 ·
2132 阅读 ·
0 点赞 ·
1 评论 ·
8 收藏

机器学习——boosting 与 bagging 知识点+面试题总结

一、boosting与bagging:(1)bagging:从原始数据中随机抽样得到多个同样大小的数据集,来训练多个基学习 器,各学习器之间互不依赖。是一种并行的方法。各分类器的权重都是相等的。(抽样方法为有放回的抽样:允许每个小数据集中可以有重复的值。)(2)boosting:用所有的数据去训练基学习器,个体学习器之间存在依赖关系,每一个学习器都是基于之前训练的学习器的结果,集中
原创
发布博客 2017.06.27 ·
6258 阅读 ·
2 点赞 ·
0 评论 ·
17 收藏

面试算法题解----拓扑结构相同的子树问题

对于两棵彼此独立的二叉树A和B,请编写一个高效算法,检查A中是否存在一棵子树与B树的拓扑结构完全相同。给定两棵二叉树的头结点A和B,请返回一个bool值,代表A中是否存在一棵同构于B的子树。普通解法为二叉树遍历+匹配问题,考察tree1中每个节点为头的子树是否与tree2一致,时间复杂度为O(N*M)N:tree1节点数 M:tree2节点数最优解法为 二叉树序
原创
发布博客 2017.06.22 ·
706 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习——神经网络、深度学习 知识点总结 及 面试题汇总

1、反向传播思想:计算出输出与标签间的损失函数值,然后计算其相对于每个神经元的梯度,根据梯度方向更新权值。(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根
原创
发布博客 2017.06.22 ·
31865 阅读 ·
26 点赞 ·
1 评论 ·
179 收藏

机器学习——决策树 知识点总结

个人对于机器学习中决策树的理解和总结
原创
发布博客 2017.06.09 ·
1129 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏