pandas学习

# pandas学习
# 1:生成模拟数据集
import pandas as pd
import numpy as np

company=["A","B","C","D"]
data=pd.DataFrame(
    {
        "company":[company[x] for x in np.random.randint(0,len(company),10)],
        "salary" :np.random.randint(5,50,10),
        "age"    :np.random.randint(20,30,10)
    }
)
data
companysalaryage
0A1021
1B1221
2D4123
3B4422
4B3621
5C2222
6B2728
7D1420
8B1825
9A3326
# 单索引,groupyby 对上面的数据以company字段进行划分,data.groupby("company"),返回的是内存地址
group=data.groupby("company")

list(group)
# 双索引
group=data.groupby(by=["company","age"])

list(group)
# 分组聚合,groupby,分组聚合即是对分组后的DataFrame进行操作,使用agg
#min,max,sum,mean,median,std,var,count
data.groupby("company").mean()
salaryage
company
A21.523.5
B27.423.4
C22.022.0
D27.521.5
#对原data增加一列avg_salary
temp=data.groupby("company")["salary"].mean()
data["avg_salary"]=data.company.map(temp)
data
companysalaryageavg_salary
0A102121.5
1B122127.4
2D412327.5
3B442227.4
4B362127.4
5C222222.0
6B272827.4
7D142027.5
8B182527.4
9A332621.5
# 如果使用transform
data["avg_age"]=data.groupby("company")["age"].transform("mean")
data
companysalaryageavg_salaryavg_age
0A102121.523.5
1B122127.423.4
2D412327.521.5
3B442227.423.4
4B362127.423.4
5C222222.022.0
6B272827.423.4
7D142027.521.5
8B182527.423.4
9A332621.523.5
# 自定义函数apply,获取最小值
def get_min(x):
    df=x.sort_values(by="age",ascending=True)
    return df.iloc[0,:]
min_age=data.groupby("company").apply(get_min)
min_age
companysalaryageavg_salaryavg_age
company
AA102121.523.5
BB122127.423.4
CC222222.022.0
DD142027.521.5
data["min_age"]=data.groupby("company")["age"].transform(min)
data
companysalaryageavg_salaryavg_agemin_age
0A102121.523.521
1B122127.423.421
2D412327.521.520
3B442227.423.421
4B362127.423.421
5C222222.022.022
6B272827.423.421
7D142027.521.520
8B182527.423.421
9A332621.523.521
data=pd.DataFrame(
    {
        "company":[company[x] for x in np.random.randint(0,len(company),100)],
        "salary" :np.random.randint(5,50,100),
        "age"    :np.random.randint(20,30,100)
    }
)
data
companysalaryage
0A3726
1C529
2B3622
3A4321
4B4429
............
95A1129
96D4825
97B2727
98B3726
99A3725

100 rows × 3 columns

# 获取分组中最大行所在方法
test=data.head(10)
test
companysalaryage
0A3726
1C529
2B3622
3A4321
4B4429
5D4621
6C1627
7B2826
8D2826
9D4023
test.iloc[test.groupby("company").apply(lambda x:x["age"].idxmax())]
companysalaryage
0A3726
4B4429
1C529
8D2826
# 找出年龄最大所在的行
data.iloc[data.groupby("company").apply(lambda x:x["age"].idxmax())]
companysalaryage
82A4029
4B4429
1C529
48D2529
data.groupby("company").apply(lambda x:x["age"].idxmax())
company
A    82
B     4
C     1
D    48
dtype: int64
def get_max(x):
    return x["age"].idxmax()
data.iloc[data.groupby("company").apply(lambda x:get_max(x))]
companysalaryage
82A4029
4B4429
1C529
48D2529
# 数据进行排名,排名相同的数据,赋予同样的排名
data["rank"]=data.groupby("company")["salary"].rank(method="min",ascending=False).astype(np.int64)
data
companysalaryagerank
0A37267
1C52921
2B36225
3A43212
4B44291
...............
95A112922
96D48251
97B272713
98B37264
99A37257

100 rows × 4 columns

data[data["rank"]==1]
companysalaryagerank
4B44291
10C49271
12A47251
34C49271
96D48251
# 找出包含特征字符串说在的行
# 数据类型转换
# 使用astype()方法强制转化dtype

# 自定义一个数据转换函数函数

# 使用pandas内置的tonumeric()和todatetime()

# 导入数据时转换数据类型
data["salary"]=data["salary"].astype("str")
data[data.salary.str.contains("2")].head(10)
companysalaryage
3D2024
5D2723
6D2925
8D2223
9A2420
10D4222
12C2523
16D2721
22D2228
27A2420
data["salary"]=data["salary"].astype("int")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 3 columns):
 #   Column   Non-Null Count  Dtype 
---  ------   --------------  ----- 
 0   company  100 non-null    object
 1   salary   100 non-null    int32 
 2   age      100 non-null    int32 
dtypes: int32(2), object(1)
memory usage: 1.7+ KB
# https://blog.csdn.net/sinat_25394043/article/details/109996453
def convet_numter(x):
    #字符串转number,如果含有的有¥,符号,需要先进行符号移除,在进行转换 
    new_val = val.replace(',', '').replace('$', '')
    return new_val
# 组内排序
data.sort_values(["salary","age"],ascending=False)
companysalaryage
82D4928
67A4924
69C4829
49B4825
34D4625
............
60B723
68C527
38A522
65D521
90C520

100 rows × 3 columns

# 定义函数

def sort_va(x):
    return x.sort_values("salary",ascending=False)
    
data.groupby("company").apply(lambda x:sort_va(x)).reset_index(drop=True)
companysalaryage
0A4924
1A4321
2A4120
3A4026
4A3820
............
95D1422
96D1122
97D1127
98D1126
99D521

100 rows × 3 columns

data.groupby("company").apply(lambda x:x.sort_values("age",ascending=False)).reset_index(drop=True)
companysalaryage
0A2829
1A2629
2A2428
3A1528
4A828
............
95D2321
96D2721
97D4621
98D3720
99D1720

100 rows × 3 columns

# 一行转换为多行
df = pd.DataFrame({'姓名':['张 三','李 四','王 五'],
                   '所在地':['北京-东城区','上海-黄浦区','广州-白云区']})
df
姓名所在地
0张 三北京-东城区
1李 四上海-黄浦区
2王 五广州-白云区
temp
01
0北京东城区
1上海黄浦区
2广州白云区
temp=df.所在地.str.split("-",expand=True)
pd.concat([df,temp],axis=1)
姓名所在地01
0张 三北京-东城区北京东城区
1李 四上海-黄浦区上海黄浦区
2王 五广州-白云区广州白云区
# https://blog.csdn.net/youyoujbd/article/details/88930961
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值