[基础算法]初等排序之插入排序

本文详细介绍了插入排序算法的工作原理及其实现过程。通过一个简单的例子展示了如何通过比较和移动元素来完成排序,同时提供了C++语言的实现代码。

介绍

插入排序是一种十分容易想到的排序算法,在一个数列中,我们需要将数一个一个取出,再按顺序依次放在相应的位置上。例如数列{8,4,5,9,6},若按升序排列,首先要将4提前队首,再将8往后移一位,随后将5提前到4后面,将8再往后移一位,最后将6提前到5后面,将8,9分别往后移一位,排序也就完成了。整个直接插入排序共用了O(n^2).

实现

语言:C++

#include<iostream>
using namespace std;
int i,j,n,a[100005];
int main()
{
    scanf("%d",&n);
    scanf("%d",&a[0]);//数组a[0]不需要排序,单独输入
    for(i=1;i<n;i++)
    {
        scanf("%d",&a[i]);//节约时间,边读数据边排序
        int k=a[i];
        j=i-1;
        while(j>=0&&a[j]>k)//移位,终止条件为移到行首或到比这个数小的数的后面
        {
            a[j+1]=a[j];
            j--;
        }
        a[j+1]=k;
    }
    for(i=0;i<n-1;i++)printf("%d ",a[i]);
    printf("%d\n",a[n-1]);
}

小结

这是排序算法中相对较简单的一个,但是也是最费时间的一种排序算法,当然为了节省节省时间我们更需要更多高效简洁的算法,coming soon!
writing by Panda_Hu 2017.5.21

本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值