[学习笔记]期望的平方/方差/立方/k次方推导及例题

本文章是[学习笔记]概率与期望进阶的一部分

丢掉寒假作业继续学
题目:Warm up 2

平方期望基本推导:

2.Square of wins: You bought N N N ( N   ≤   1 0 5 N ≤ 10^5 N105) lottery tickets. The i i i-th of them is winning with p-bility p i p_i pi. The event are independent (important!). Find EV of the square of the number of winning tickets.
给你 n n n 0 / 1 {0/1} 0/1随机变量 x i x_i xi,每个变量为 1 1 1的概率为 p i p_i pi
E [ ( ∑ x i ) 2 ] E[(\sum x_i)^2] E[(xi)2]

sol:
我们利用下面的期望基本性质对式子展开:

如果 X , Y X,Y X,Y独立,那么 E [ X Y ] = E [ X ] × E [ Y ] E[XY]=E[X]\times E[Y] E[XY]=E[X]×E[Y]
E [ X + Y ] = E [ X ] + E [ Y ] E[X+Y]=E[X]+E[Y] E[X+Y]=E[X]+E[Y]

E [ ( ∑ i x i ) 2 ] = E [ ∑ i , j x i × x j ] = ∑ i , j E [ x i × x j ] = ∑ i ≠ j E [ x i ] × E [ x j ] + ∑ i E [ x i 2 ] = ∑ i ≠ j p i × p j + ∑ i p i \begin{aligned} E[(\sum_{i} x_i)^2]&=E[\sum_{i,j}x_i\times x_j]\\ &=\sum_{i,j}E[x_i\times x_j]\\ &=\sum_{i≠j}E[x_i]\times E[x_j]+\sum_{i}E[x_i^2]\\ &=\sum_{i≠j}p_i\times p_j+\sum_{i}p_i \end{aligned} E[(ixi)2]=E[i,jxi×xj]=i,jE[xi×xj]=i=jE[xi]×E[xj]+iE[xi2]=i=jpi×pj+ipi

方差基本推导:

之前概率生成函数的时候已经说过了。
V a r ( X ) = E [ ( X − E [ X ] ) 2 ] = E [ X 2 − 2 X E [ X ] + E 2 [ X ] ] = E [ X 2 ] − 2 E [ X E [ X ] ] + E [ E 2 [ X ] ] = E [ X 2 ] − 2 E 2 [ X ] + E 2 [ X ] = E [ X 2 ] − E 2 [ X ] \begin{aligned} Var(X)&=E[(X-E[X])^2]\\ &=E[X^2-2XE[X]+E^2[X]]\\ &=E[X^2]-2E[XE[X]]+E[E^2[X]]\\ &=E[X^2]-2E^2[X]+E^2[X]\\ &=E[X^2]-E^2[X]\\ \end{aligned} Var(X)=E[(XE[X])2]=E[X22XE[X]+E2[X]]=E[X2]2E[XE[X]]+E[E2[X]]=E[X2]2E2[X]+E2[X]=E[X2]E2[X]
转为求平方期望

推导中有一个关键,就是 E [ X ] E[X] E[X]是一个确定的常数
因此才会有 E [ X ] E[X] E[X] X X X独立, E [ E 2 [ X ] ] = E 2 [ X ] E[E^2[X]]=E^2[X] E[E2[X]]=E2[X]等结论。

立方期望基本推导:

3.Cube of wins:Same but find EV of the 3-rd or 4-th power.
还是上面那道题,求 E [ ( ∑ x i ) 3 ] E[(\sum x_i)^3] E[(xi)3] E [ ( ∑ x i ) 4 ] E[(\sum x_i)^4] E[(xi)4]

sol:
还是一样的套路:
E [ ( ∑ i x i ) 3 ] = E [ ∑ i , j x i × x j × x k ] = 6 ∑ i < j < k p i ⋅ p j ⋅ p k + 6 ∑ i < j p i ⋅ p j + ∑ i p i \begin{aligned} E[(\sum_{i} x_i)^3]&=E[\sum_{i,j}x_i\times x_j\times x_k]\\ &=6\sum_{i<j<k}p_i·p_j·p_k+6\sum_{i<j}p_i·p_j+\sum_{i}p_i \end{aligned} E[(ixi)3]=E[i,jxi×xj×xk]=6i<j<kpipjpk+6i<jpipj+ipi
4次方一样的。

CF 1187 Expected Square Beauty

详细题解

• 令 b i b_i bi [ l i , r i ] [l_i,r_i] [li,ri]里面的随机数, X X X b b b不同段的段数,求 E [ X 2 ] E[X^2] E[X2]
n ≤ 1 0 5 n\leq 10^5 n105

经典平方期望入门题。
设事件 X i X_i Xi表示 b i ≠ b i + 1 b_{i}≠b_{i+1} bi=bi+1,其中我们强制规定 X n X_n Xn为必然事件。
这里一定要注意的是事件 X i X_i Xi X i + 1 X_{i+1} Xi+1互相不独立需要单独计算,计算的话可以考虑简单容斥一下。
E [ X 2 ] = E [ ( ∑ i = 1 n X i ) 2 ] = ∑ ∣ i − j ∣ ≥ 2 E [ X i ] × E [ X j ] + ∑ i E [ X i X i + 1 ] + ∑ i E [ X i 2 ] = ∑ ∣ i − j ∣ ≥ 2 A i × A j + ∑ i B i + ∑ i A i \begin{aligned} E[X^2]&=E[(\sum^n_{i=1} X_i)^2]\\ &=\sum_{|i-j|≥2}E[X_i]\times E[X_j]+\sum_{i}E[X_iX_{i+1}]+\sum_{i}E[X_i^2]\\ &=\sum_{|i-j|≥2}A_i\times A_j+\sum_{i}B_i+\sum_{i} A_i\\ \end{aligned} E[X2]=E[(i=1nXi)2]=ij2E[Xi]×E[Xj]+iE[XiXi+1]+iE[Xi2]=ij2Ai×Aj+iBi+iAi
A i , B i A_i,B_i Ai,Bi懒得写了见之前的博客。

CF 1236 F Alice and the Cactus

概率与期望综合能力测试:)

• 给一个仙人掌,每个点1/2删除。
• 问期望下连通块个数的方差。

V a r ( X ) = E [ ( X − E [ X ] ) 2 ] = E [ X 2 ] − E 2 [ X ] Var(X)=E[(X-E[X])^2]=E[X^2]-E^2[X] Var(X)=E[(XE[X])2]=E[X2]E2[X]
连通块个数 X = V − E + C X=V-E+C X=VE+C
先要算 E [ V ] − E [ E ] − E [ C ] E[V]-E[E]-E[C] E[V]E[E]E[C]
然后是最精彩的部分:
E ( ( V − E + C ) 2 ) = E ( V 2 ) + E ( E 2 ) + E ( C 2 ) + 2 ( E ( V C ) − E ( V E ) − E ( V C ) ) E((V-E+C)^2)=E(V^2)+E(E^2)+E(C^2)+2(E(VC)-E(VE)-E(VC)) E((VE+C)2)=E(V2)+E(E2)+E(C2)+2(E(VC)E(VE)E(VC))
这九种情况依次计算就好:)
放心…你一定不会自闭的…

Fibonacci’s Nightmare

推柿子游戏的噩梦关卡:)

a 0 = 1 a_0=1 a0=1
a n = a i + a j a_n=a_i+a_j an=ai+aj,其中 i , j i,j i,j [ 0 , n − 1 ] [0,n-1] [0,n1]之间随机选择。
• 求第n项的方差。
n < = 1 0 6 n<=10^6 n<=106

推导写起来太麻烦GU

k方期望基本推导:

众所周知,第二类斯特林数是自然幂拆成组合数的系数(点我学习):
x k = ∑ i = 0 k { k i } x i ‾ = ∑ i = 0 k { k i } ( x i ) ⋅ i ! x^k=\sum^{k}_{i=0}\begin{Bmatrix} k \\ i \end{Bmatrix}x^{\underline{i}}=\sum^{k}_{i=0}\begin{Bmatrix} k \\ i \end{Bmatrix}\binom{x}{i}·i! xk=i=0k{ki}xi=i=0k{ki}(ix)i!
UPD:当然,这并不意味着遇到求权值的k次方就要用这个结论。例如在权值由两个确定数字组成的时候,我们可以使用二项式定理直接解决。
我们将它运用到求k次的期望中。
例如之前我们求的 E [ ( ∑ i x i ) 3 ] E[(\sum_{i} x_i)^3] E[(ixi)3]
E [ ( ∑ i x i ) 3 ] = E [ ∑ i , j x i × x j × x k ] = { 3 3 } ⋅ 3 ! ∑ i < j < k p i ⋅ p j ⋅ p k + { 3 2 } ⋅ 2 ! ∑ i < j p i ⋅ p j + { 3 1 } ⋅ 1 ! ∑ i p i \begin{aligned} E[(\sum_{i} x_i)^3]&=E[\sum_{i,j}x_i\times x_j\times x_k]\\ &=\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}·3!\sum_{i<j<k}p_i·p_j·p_k+\begin{Bmatrix} 3 \\ 2 \end{Bmatrix}·2!\sum_{i<j}p_i·p_j+\begin{Bmatrix} 3 \\ 1 \end{Bmatrix}·1!\sum_{i}p_i \end{aligned} E[(ixi)3]=E[i,jxi×xj×xk]={33}3!i<j<kpipjpk+{32}2!i<jpipj+{31}1!ipi
上面这东西不管是从代数意义上或者是从组合意义上都很好理解。

小栗子(好像没什么关系):

6.Small power of subtree You’re given a tree of size N N N ( N   ≤   1 0 5 N ≤ 10^5 N105) and an integer k k k ( k   ≤   10 k ≤ 10 k10). Find the sum of sizek over all “subtrees”, i.e. connected subgraphs. Print the answer modulo 1 0 9   +   7 10^9 + 7 109+7.
给你一个节点数为 n n n的树,求所有连通子树的siz的k次方的和

大概是CF1097G的简化版。
设一个连通子树为 T T T,然后有:
∑ T s i z e ( T ) k = ∑ T ∑ i = 0 k { k i } ( s i z e ( T ) i ) ⋅ i ! = ∑ i = 0 k { k i } ⋅ i ! ∑ T ⋅ ( s i z e ( T ) i ) \begin{aligned} \sum_{T} size(T)^k&=\sum_{T}\sum^{k}_{i=0}\begin{Bmatrix} k \\ i \end{Bmatrix}\binom{size(T)}{i}·i!\\ &=\sum^{k}_{i=0}\begin{Bmatrix} k \\ i \end{Bmatrix}·i!\sum_{T}·\binom{size(T)}{i}\\ \end{aligned} Tsize(T)k=Ti=0k{ki}(isize(T))i!=i=0k{ki}i!T(isize(T))
接下来就是算 ∑ T ⋅ ( s i z e ( T ) i ) \sum_{T}·\binom{size(T)}{i} T(isize(T))
考虑dp。
d p i , j dp_{i,j} dpi,j为以 i i i为根的连通子树,siz为 j j j的方案数。
做一个背包即可。
注意做背包的复杂度其实是 O ( n k ) O(nk) O(nk)的。

火车题

指hc出的题…

• 无向图的权值为连通块个数的 m m m次。
• 求所有 n n n个点有标号图的权值和。
n ≤ 30000 n\leq 30000 n30000, m ≤ 15 m\leq 15 m15

还是之前的套路,我们需要计算连通块选 i i i个的方案数。
使用无向图含 j j j个连通块计数的套路:
f i = ln ⁡ G ( x ) g i , j = ∑ k ( n k ) g k , j − 1 ⋅ f i − k f_i=\ln G(x)\\ g_{i,j}=\sum_{k} \binom{n}{k} g_{k,j-1}·f_{i-k} fi=lnG(x)gi,j=k(kn)gk,j1fik
i i i个的话就是 ∑ k ( n k ) g k , i ⋅ 2 n − k i ! \sum_{k}\binom{n}{k}g_{k,i}·\frac{2^{n-k}}{i!} k(kn)gk,ii!2nk

SRM 686 CyclesNumber

下面出现的结论可以在这里看到。

• 求n个点的置换循环个数m次方的和。
n ≤ 100000 , m ≤ 500 n\leq 100000, m\leq 500 n100000,m500

看到求置换个数首先想到第一类斯特林数。
于是答案就是 ∑ i = 1 n [ n i ] ⋅ i m \sum^{n}_{i=1} \begin{bmatrix} n \\ i \end{bmatrix}·i^m i=1n[ni]im
有一个结论: [ n + 1 m + 1 ] = ∑ i [ n i ] ( i m ) \begin{bmatrix} n+1 \\ m+1 \end{bmatrix}=\sum_{i} \begin{bmatrix} n \\ i \end{bmatrix} \binom{i}{m} [n+1m+1]=i[ni](mi)
然后就可以跟之前一样推式子了:
∑ i = 1 n [ n i ] ⋅ i m = ∑ i = 1 n [ n i ] ∑ j = 0 m { m j } ( i j ) ⋅ j ! = ∑ j = 0 m j ! ⋅ { m j } ∑ i = 1 n [ n i ] ( i j ) = ∑ j = 0 m j ! ⋅ { m j } [ n + 1 j + 1 ] \begin{aligned} \sum^{n}_{i=1} \begin{bmatrix} n \\ i \end{bmatrix}·i^m &=\sum^{n}_{i=1}\begin{bmatrix} n \\ i \end{bmatrix}\sum^{m}_{j=0}\begin{Bmatrix} m \\ j \end{Bmatrix}\binom{i}{j}·j!\\ &=\sum^{m}_{j=0}j!·\begin{Bmatrix} m \\ j \end{Bmatrix}\sum^{n}_{i=1}\begin{bmatrix} n \\ i \end{bmatrix}\binom{i}{j}\\ &=\sum^{m}_{j=0}j!·\begin{Bmatrix} m \\ j \end{Bmatrix}\begin{bmatrix} n+1 \\ j+1 \end{bmatrix} \end{aligned} i=1n[ni]im=i=1n[ni]j=0m{mj}(ji)j!=j=0mj!{mj}i=1n[ni](ji)=j=0mj!{mj}[n+1j+1]
O ( n m ) + O ( m 2 ) O(nm)+O(m^2) O(nm)+O(m2)预处理两个数计算即可。

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值