【洛谷 P8692】[蓝桥杯 2019 国 C] 数正方形 题解(组合数学+平面几何)

[蓝桥杯 2019 国 C] 数正方形

题目描述

在一个 N × N N \times N N×N 的点阵上,取其中 4 4 4 个点恰好组成一个正方形的 4 4 4 个顶点,一共有多少种不同的取法?

由于结果可能非常大,你只需要输出模 1 0 9 + 7 10^9 + 7 109+7 的余数。

如上图所示的正方形都是合法的。

输入格式

输入包含一个整数 N N N

输出格式

输出一个整数代表答案。

样例 #1

样例输入 #1

4

样例输出 #1

20

提示

对于所有评测用例, 2 ≤ N ≤ 1 0 6 2 ≤ N ≤ 10^6 2N106

蓝桥杯 2019 年国赛 C 组 G 题


思路

首先从输入中读取一个整数 N N N,这个整数表示点阵的大小。然后将 N N N 减一,这是因为在一个 N × N N \times N N×N 的点阵上构成的正方形的最大边长为 N − 1 N-1 N1。然后初始化长整型变量 ans 0 0 0,用来存储最终的结果。

接着进行从 1 1 1 n n n 的循环,每一次循环都计算一种边长为 i i i 的正方形的数量。在循环中,首先计算出在边长为 n n n 的大正方形中含有多少个边长为 i i i 的子正方形,这个数量为 ( n − i + 1 ) × ( n − i + 1 ) (n - i + 1) \times (n - i + 1) (ni+1)×(ni+1)。然后将这个数量乘以 i i i,因为边长为 i i i 的大正方形可以取得 4 4 4 个定点在大正方形边上的小正方形。这样就得到了所有边长为 i i i 的正方形的数量。最后将这个数量累加到 ans 中,并对 1 0 9 + 7 10^9 + 7 109+7 取余。

最后输出 ans,这就是在点阵上取 4 4 4 个点恰好组成一个正方形的所有可能取法的数量。


AC代码

#include <algorithm>
#include <cmath>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using ll = long long;

const int N = 1e6 + 7;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;

int n;

int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);

	cin >> n;

    // n * n 点阵构成的正方形边长为 n - 1
	n--;

	ll ans = 0;
	for (int i = 1; i <= n; i++) {
		ll t = (n - i + 1);
		// cout << t * t << endl;
        // 边长为 n 的大正方形中含有 t * t 个边长为 i 的子正方形(正放)
        // 边长为 i 的大正方形可以取得 4 个定点在大正方形边上的小正方形(正放、斜放)
		ans = (ans + (1LL * t * t * i)) % MOD;
	}
	cout << ans << "\n";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值