[蓝桥杯 2019 国 C] 数正方形
题目描述
在一个 N × N N \times N N×N 的点阵上,取其中 4 4 4 个点恰好组成一个正方形的 4 4 4 个顶点,一共有多少种不同的取法?
由于结果可能非常大,你只需要输出模 1 0 9 + 7 10^9 + 7 109+7 的余数。
如上图所示的正方形都是合法的。
输入格式
输入包含一个整数 N N N。
输出格式
输出一个整数代表答案。
样例 #1
样例输入 #1
4
样例输出 #1
20
提示
对于所有评测用例, 2 ≤ N ≤ 1 0 6 2 ≤ N ≤ 10^6 2≤N≤106。
蓝桥杯 2019 年国赛 C 组 G 题
思路
首先从输入中读取一个整数
N
N
N,这个整数表示点阵的大小。然后将
N
N
N 减一,这是因为在一个
N
×
N
N \times N
N×N 的点阵上构成的正方形的最大边长为
N
−
1
N-1
N−1。然后初始化长整型变量 ans
为
0
0
0,用来存储最终的结果。
接着进行从
1
1
1 到
n
n
n 的循环,每一次循环都计算一种边长为
i
i
i 的正方形的数量。在循环中,首先计算出在边长为
n
n
n 的大正方形中含有多少个边长为
i
i
i 的子正方形,这个数量为
(
n
−
i
+
1
)
×
(
n
−
i
+
1
)
(n - i + 1) \times (n - i + 1)
(n−i+1)×(n−i+1)。然后将这个数量乘以
i
i
i,因为边长为
i
i
i 的大正方形可以取得
4
4
4 个定点在大正方形边上的小正方形。这样就得到了所有边长为
i
i
i 的正方形的数量。最后将这个数量累加到 ans
中,并对
1
0
9
+
7
10^9 + 7
109+7 取余。
最后输出 ans
,这就是在点阵上取
4
4
4 个点恰好组成一个正方形的所有可能取法的数量。
AC代码
#include <algorithm>
#include <cmath>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using ll = long long;
const int N = 1e6 + 7;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;
int n;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n;
// n * n 点阵构成的正方形边长为 n - 1
n--;
ll ans = 0;
for (int i = 1; i <= n; i++) {
ll t = (n - i + 1);
// cout << t * t << endl;
// 边长为 n 的大正方形中含有 t * t 个边长为 i 的子正方形(正放)
// 边长为 i 的大正方形可以取得 4 个定点在大正方形边上的小正方形(正放、斜放)
ans = (ans + (1LL * t * t * i)) % MOD;
}
cout << ans << "\n";
return 0;
}