【数据结构与算法】删除循环队列中第k个元素的算法 C++实现(循环队列+模运算)

数组a[MaxSize]用作一个循环队列,front指向循环队列中队头元素的前一个位置,rear指向队尾元素的位置。设计删除队列中第k个元素的算法。


思路

首先,判断 k k k是否在有效范围内,即1至队列大小之间。如果不在此范围内,返回错误。

如果 k k k在有效范围内,计算目标元素在队列中的位置 p,这是通过 (Q.front + k - 1) % MaxSize 计算的。然后,将队尾指针 Q.rear 向前移动一位,这是因为即将删除一个元素。

接下来,执行一个循环,将位于目标元素之后的所有元素向前移动一位。这通过 Q.a[p] = Q.a[(p + 1) % MaxSize] 实现,然后更新 p(p + 1) % MaxSize。此循环继续进行,直到 p 等于 Q.rear,即已经处理了所有需要移动的元素。

这个函数的时间复杂度为 O ( n ) O(n) O(n),因为在最坏的情况下,可能需要移动队列中的所有元素。空间复杂度为 O ( 1 ) O(1) O(1),因为只使用了几个临时变量,与队列的大小无关。


代码

#include <algorithm>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using Status = int;
using ElemType = int;

const int N = 1e6 + 7;
const int MaxSize = 100;
const int TRUE = 1;
const int FALSE = 0;
const int OK = 1;
const int ERROR = 0;
const int INFEASIBLE = -1;
// const int OVERFLOW = -2;

int n;
ElemType a[N];

struct CircularQueue {
	ElemType a[MaxSize];
	int front, rear;
};

Status initQueue(CircularQueue &Q) {
	Q.front = Q.rear = 0;
	return OK;
}

bool queueFull(CircularQueue Q) { return ((Q.rear + 1) % MaxSize == Q.front); }

bool queueEmpty(CircularQueue Q) { return (Q.front == Q.rear); }

Status queuePush(CircularQueue &Q, ElemType e) {
	if (queueFull(Q)) {
		return ERROR;
	}
	Q.a[Q.rear] = e;
	Q.rear = (Q.rear + 1) % MaxSize;
	return OK;
}

int queueSize(CircularQueue &Q) {
	return ((Q.rear - Q.front + MaxSize) % MaxSize);
}

ElemType queueFront(CircularQueue Q) {
	if (queueEmpty(Q)) {
		return NULL;
	}
	return Q.a[Q.front];
}

Status queuePop(CircularQueue &Q) {
	if (queueEmpty(Q)) {
		return ERROR;
	}
	Q.front = (Q.front + 1) % MaxSize;
	return OK;
}

Status eraseNthElem(CircularQueue &Q, int k) {
	if (k > queueSize(Q) || k < 1) {
		return ERROR;
	}
	int p = (Q.front + k - 1) % MaxSize;
	Q.rear = (Q.rear - 1) % MaxSize;
	while (p < Q.rear) {
		int q = (p + 1) % MaxSize;
		Q.a[p] = Q.a[(p + 1) % MaxSize];
		p = q;
	}
	return OK;
}

int main() {
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}

	CircularQueue Q;
	initQueue(Q);

	for (int i = 0; i < n; i++) {
		queuePush(Q, a[i]);
	}

	for (int i = 0; i < n; i++) {
		int f = queueFront(Q);
		cout << queueFront(Q) << " ";
		queuePop(Q);
		queuePush(Q, f);
	}
	cout << "\n";

	int k;
	cin >> k;
	n -= eraseNthElem(Q, k);

	for (int i = 0; i < n; i++) {
		int f = queueFront(Q);
		cout << queueFront(Q) << " ";
		queuePop(Q);
		queuePush(Q, f);
	}
	cout << "\n";
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值