数组a[MaxSize]用作一个循环队列,front指向循环队列中队头元素的前一个位置,rear指向队尾元素的位置。设计删除队列中第k个元素的算法。
思路
首先,判断 k k k是否在有效范围内,即1至队列大小之间。如果不在此范围内,返回错误。
如果
k
k
k在有效范围内,计算目标元素在队列中的位置 p
,这是通过 (Q.front + k - 1) % MaxSize
计算的。然后,将队尾指针 Q.rear
向前移动一位,这是因为即将删除一个元素。
接下来,执行一个循环,将位于目标元素之后的所有元素向前移动一位。这通过 Q.a[p] = Q.a[(p + 1) % MaxSize]
实现,然后更新 p
为 (p + 1) % MaxSize
。此循环继续进行,直到 p
等于 Q.rear
,即已经处理了所有需要移动的元素。
这个函数的时间复杂度为 O ( n ) O(n) O(n),因为在最坏的情况下,可能需要移动队列中的所有元素。空间复杂度为 O ( 1 ) O(1) O(1),因为只使用了几个临时变量,与队列的大小无关。
代码
#include <algorithm>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;
using Status = int;
using ElemType = int;
const int N = 1e6 + 7;
const int MaxSize = 100;
const int TRUE = 1;
const int FALSE = 0;
const int OK = 1;
const int ERROR = 0;
const int INFEASIBLE = -1;
// const int OVERFLOW = -2;
int n;
ElemType a[N];
struct CircularQueue {
ElemType a[MaxSize];
int front, rear;
};
Status initQueue(CircularQueue &Q) {
Q.front = Q.rear = 0;
return OK;
}
bool queueFull(CircularQueue Q) { return ((Q.rear + 1) % MaxSize == Q.front); }
bool queueEmpty(CircularQueue Q) { return (Q.front == Q.rear); }
Status queuePush(CircularQueue &Q, ElemType e) {
if (queueFull(Q)) {
return ERROR;
}
Q.a[Q.rear] = e;
Q.rear = (Q.rear + 1) % MaxSize;
return OK;
}
int queueSize(CircularQueue &Q) {
return ((Q.rear - Q.front + MaxSize) % MaxSize);
}
ElemType queueFront(CircularQueue Q) {
if (queueEmpty(Q)) {
return NULL;
}
return Q.a[Q.front];
}
Status queuePop(CircularQueue &Q) {
if (queueEmpty(Q)) {
return ERROR;
}
Q.front = (Q.front + 1) % MaxSize;
return OK;
}
Status eraseNthElem(CircularQueue &Q, int k) {
if (k > queueSize(Q) || k < 1) {
return ERROR;
}
int p = (Q.front + k - 1) % MaxSize;
Q.rear = (Q.rear - 1) % MaxSize;
while (p < Q.rear) {
int q = (p + 1) % MaxSize;
Q.a[p] = Q.a[(p + 1) % MaxSize];
p = q;
}
return OK;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
CircularQueue Q;
initQueue(Q);
for (int i = 0; i < n; i++) {
queuePush(Q, a[i]);
}
for (int i = 0; i < n; i++) {
int f = queueFront(Q);
cout << queueFront(Q) << " ";
queuePop(Q);
queuePush(Q, f);
}
cout << "\n";
int k;
cin >> k;
n -= eraseNthElem(Q, k);
for (int i = 0; i < n; i++) {
int f = queueFront(Q);
cout << queueFront(Q) << " ";
queuePop(Q);
queuePush(Q, f);
}
cout << "\n";
return 0;
}