- 博客(6)
- 收藏
- 关注
原创 论文阅读笔记:A Survey on Knowledge Graph-Based Recommender Systems
论文阅读笔记:A Survey on Knowledge Graph-Based Recommender Systems一、Abstract二、Introduction2.1. Collaborative Filtering:2.2. Content-based Filtering:2.3. Hybrid Method:三、知识图谱推荐系统的3种方法:3.1 Embedding-based Methods3.2 Path-based Methods3.3 Unified Methods原文: A Surv
2020-11-17 21:25:06 1861 1
原创 Knowledge Graph&GNN&Recommender System
[Knowledge Graph & GNN & Recommender System]1. A Survey on Knowledge Graph-Based Recommender Systems2. Graph Learning Approaches to Recommender Systems: A Review3. Deep Learning on Knowledge Graph for RecommenderSystem: A Survey要读的三篇有关Knowledge Gr
2020-11-16 21:51:35 641
原创 CCKS2020笔记-2
Representation Learning on Knowledge Graphs:From Shallow Embedding to Graph Neural Networks - Yizhou Sun - UCLApart 1:Shallow knowledge graph embeddingknowledge graph:example of KG:Applications of KGs:Knowledge graph embedding:TransE: (2013)DistMult:(ICLR'
2020-11-14 22:00:43 733
原创 CCKS2020笔记
推进语言模型的前沿研究CCKS2020-推进语言模型的前沿研究 - 李航 - 字节跳动past:n-gram马尔可夫present:预训练模型:RNNTransformerGPT:链式法则Bert:bidirectional language model 、mask 模型更复杂,表示能力更强,应用在语言理解任务里。they work:1、Soft-mask Bert 中文错别字纠正检测能力:GRU纠错能力:Bert2、AMBERT(a multi-grained bert
2020-11-14 11:29:16 1517
原创 基于知识图的推荐
基于知识图的推荐阅读论文:Graph Learning Approaches to Recommender Systems: A ReviewarXiv:2004.11718摘要近年来,基于图学习的推荐系统(GLRS)得到了迅速的发展。GLRS主要采用先进的图学习方法,对推荐系统(RS)中用户的偏好、意图、项目特征和流行程度进行建模。与传统的RS(包括基于内容的过滤和协同过滤)不同,GLRS建立在简单或复杂的图形上,其中各种对象(例如用户、项目和属性)是显式或隐式连接的。随着图学习技术的迅速发展,
2020-11-12 22:08:37 257
原创 python:jieba分词+词性标注
python:jieba分词+词性标注python:jieba分词+词性标注处理数据jieba分词导入相关包创建停用词jieba.cut分词进行词性标注文件读取写入python:jieba分词+词性标注做实验室的一个项目,暂时要做的内容:对文本数据作摘要(<8)。处理数据首先观察文本数据,我们需要截取符号<SEP 之前的文本。f = open("cut.txt",'r',encoding='utf-8')f1 = open("cut_result.txt",'w',encoding
2020-11-10 15:21:09 10164 7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人