自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 优化|列生成算法及Java调用cplex实现

优化|列生成算法及Java调用cplex实现Cutting Stock ProblemColumn Generation AlgorithmJava调用cplex实现CG算法Cutting Stock Problem本文中的课件来自清华大学深圳国际研究生院,物流与交通学部张灿荣教授《高级运筹学》课程。  列生成算法的引入,让我们从一个经典的问题开始,即下料问题(Cutting Stock Problem)。  假设有某家公司售卖3种尺寸分别为3-ft、5-ft和9-ft的产品,3种产品的需求量

2020-12-20 11:47:31 3868 9

原创 2020-12-15

手把手教你用Gurobi求解一个数学模型Introduction采用python编程语言调用gurob求解器求解经典组合优化问题:带时间窗的车辆路径规划问题求解结果:例如:Model(用到的数学模型如VRPTW,伪代码,或者复现的论文公式。)例如:直接摆出代码里面实现的数学模型Quick start如何快速运行代码,或说明每一个文件如XX.py : 功能main.py : 主函数Dependencies(如有用到什么特殊的包或者版本需要最新的这里强调一下,一般也不需

2020-12-16 10:46:17 2810

原创 2020-12-15

Java调用cplex求解运输问题原博客链接:https://blog.csdn.net/qq_35008055/article/details/109880741运行结果:Introduction采用Java编程语言调用cplex求解器求解了经典线性规划问题:运输问题。Model目标函数为最小化运输成本:min⁡∑i=1m∑j=1mcijxij(1)\min \sum_{i=1}^m\sum_{j=1}^m c_{ij} x_{ij} \tag{1}mini=1∑m​j

2020-12-15 22:48:13 2075

原创 Python实现动态规划Labeling算法求解SPPRC问题

Python实现动态规划Labeling算法求解SPPRC问题SPPRC问题Labeling算法Python编程实现首先在python中对该图进行定义:创建Label类调用labeling算法计算本文中的课件来自清华大学深圳国际研究生院,物流与交通学部戚铭尧教授《物流地理信息系统》课程。SPPRC问题  带资源约束的最短路径问题(shortest path problem with resource constraints)是一个众所周知的NP-Hard问题。 除了作为网络问题直接应用外,SPPR

2020-12-03 22:48:54 4293 6

原创 手把手教你用Gurobi求解一个数学模型

手把手教你用Gurobi求解一个数学模型手把手教你用Gurobi求解一个数学模型带时间窗的车辆路径规划问题(Vrptw)python调用Gurobi求解Vrptw首先我们定义一下需要用到的参数:定义一个读取数据的函数,并对节点之间的距离进行计算:读取数据,并定义一些参数:调用gurobi进行模型的建立与求解:根据式(9)定义决策变量,并加入模型当中:根据式(1)定义目标函数,并加入模型当中:根据式(2)~(8)定义决策变量,并加入模型当中:手把手教你用Gurobi求解一个数学模型在接触Gurobi之前,

2020-11-26 20:57:00 26362 26

原创 Java调用cplex求解运输问题

Java调用cplex求解运输问题Java调用cplex求解运输问题运输问题(Transportation Problem)描述运输问题的数学模型Java调用cplex求解运输问题transportation_node类transportation_relation类读取数据在cplex中建立运输问题模型主函数main求解结果Java调用cplex求解运输问题本文中的课件来自清华大学深圳国际研究生院,物流与交通学部张灿荣教授《生产管理》课程。运输问题(Transportation Problem)

2020-11-20 23:26:49 5461 3

原创 百度飞桨强化学习课程心得

百度飞桨强化学习课程心得引言: 什么是强化学习第一节:从SARSA到Q-learning第二节:Deep Q network第三节:Policy gradient第四节:DDPG引言: 什么是强化学习在参加百度的活动之前,我只是粗略的对于强化学习有一个概念,这篇文章也仅仅是一位初学者的心得体会,望大佬们批评指正,文章中的图片均来自于网络或百度课程当中。从上图我们可以比较直观地看出强化学习与监督学习的区别,强化学习关注的在与环境的交互中,智能体(Agent)需要作出怎样的动作,并且在作出这个动作后会带来

2020-06-25 22:38:26 2595

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除