CF464D World of Darkraft - 2(期望DP)

4 篇文章 0 订阅

Roma 在游戏“World of Darkraft”(理论上应该是 World of darkcraft,MineCraft 的一个版本)找到一个新角色。 R o m a \mathrm{Roma} Roma 有 k种装备,一开始每种装备各有 1个,且每种装备的初始等级均为 1。
游戏中可以靠打怪来获取新装备,总共有 n 只怪兽,每打赢 1 只怪兽后, R o m a \mathrm{Roma} Roma 会随机获得一种装备 a a a (a∈[1,k]),假设原有的 a 装备的等级为 t,那么新获得的装备的等级为 [1,t+1], R o m a \mathrm{Roma} Roma 会将新获得的装备和原来的装备中等级较高的装备留下,等级较低的装备卖出,卖出可获得的金币为该装备的等级。 问打完这 n只怪兽后, R o m a \mathrm{Roma} Roma 获得的金币的期望。 1 &lt; = n &lt; = 1 0 5 , 1 &lt; = k &lt; = 1 0 3 1&lt;=n&lt;=10^5,1&lt;=k&lt;=10^3 1<=n<=105,1<=k<=103
Sample Input

input1

1 3

input2

2 1

input3

10 2

Sample Output

output1

1.0000000000

output2

2.3333333333

output3

15.9380768924

这道题我们考虑概率DP

设dp[i][j]表示打赢只要求出了前i只怪兽后某种装备被替换后价值为j的期望。

为什么是某装备?

因为所有装备的期望值是相同的,所以我们只要求出一种装备的期望,再乘上k即可。

有两种情况:

1.爆出了等级为j+1的神装。(概率为 1 / ( j + 1 ) 1/(j+1) 1/(j+1)

dp[i][j]+=(dp[i-1][j-1]+j)/j+1。

2.只得到等级<=j的装备。(概率为 j / ( j + 1 ) j/(j+1) j/(j+1)

dp[i][[j]+=(dp[i-1][j]+(j+1)/2)*j/(j+1);//因为1至j是等概率出现的,所以取平均(j+1)/2。

但是这样你打出来你会发现自己MLE或TLE了,为什么?

i过于大,j也过于大。

优化:1.dp[i][j]的更新只需要他前一个的情况,所以我们可以考虑用滚动数组记录。

2.因为这个状态的转移是会收敛的,所以j越大他所产生的变化就越小,最终小到可以忽略不计,所以j只用取到很小就可以当作答案用了(有很多神仙j取600就过了,不过保险起见最好取1000)。

#include<bits/stdc++.h>
using namespace std;
int n,k,s=1;
double dp[2][1010];
int main()
{
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++,s^=1)
	{
		for(int j=min(n,1000);j;j--)
		{
			dp[s][j]=((dp[s^1][j+1]+j)/(j+1.0)+(dp[s^1][j]+(j+1)/2.0)*j/(j+1.0))/double(k)+dp[s^1][j]*(k-1.0)/double(k);
		}
	}
	printf("%.11lf\n",dp[s^1][1]*k);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值