注水法

注水算法的基本原理就是根据香农公式和限制条件,通过拉格朗日乘数法组成的一个方程,先令其偏导为零,求出Pi的表达式,但是Pi的表达式中包含一个未知数,再根据限制条件可以先求解出该未知数,再回代到之前的方程中,可以求解得每个信道根据信道质量分配得到的Pi。求解问题如下:
mimo信道容量: max: C = ∑ i = 1 m log ⁡ 2 ( 1 + P i σ 2 λ i ) C = \sum\limits_{i = 1}^m {{{\log }_2}\left( {1 + \frac{{{P_i}}}{{{\sigma ^2}}}{\lambda _i}} \right)} C=i=1mlog2(1+σ2Piλi)
功率满足: ∑ i = 1 m P i = P \sum\limits_{i = 1}^m {{P_i} = P} i=1mPi=P
上面为等式约束问题,可用拉格朗日乘子法求解。
引入拉格朗日函数,有 Z ( λ , P i ) = ∑ i = 1 m log ⁡ 2 ( 1 + P i σ 2 λ i ) + L ( P − ∑ i = 1 m P i ) Z(\lambda ,{P_i}) = \sum\limits_{i = 1}^m {{{\log }_2}\left( {1 + \frac{{{P_i}}}{{{\sigma ^2}}}{\lambda _i}} \right)} + L(P - \sum\limits_{i = 1}^m {{P_i}} ) Z(λ,Pi)=i=1mlog2(1+σ2Piλi)+L(Pi=1mPi)
P i {{P_i}} Pi求偏导,有
在这里插入图片描述
解得: P i = 1 L ∙ ln ⁡ 2 − σ 2 λ i = μ − σ 2 λ i {P_i} = \frac{1}{{L \bullet \ln 2}} - \frac{{{\sigma ^2}}}{{{\lambda _i}}}=\mu-\frac{{{\sigma ^2}}}{{{\lambda _i}}} Pi=Lln21λiσ2=μλiσ2
其中 μ \mu μ为常数
因为功率不能为负数,将上述写为如下形式:
P i = ( μ − σ 2 λ i ) + {P_i} = {\left( {\mu - \frac{{{\sigma ^2}}}{{{\lambda _i}}}} \right)^ + } Pi=(μλiσ2)+
所以最优的分配策略如上式
其中 ( a ) + = max ⁡ ( a , 0 ) {\left( a \right)^ + } = \max (a,0) (a)+=max(a,0)
这里可用通过 ∑ i = 1 m P i = P = m μ − ∑ i = 1 m σ 2 λ 2 \sum\limits_{i = 1}^m {{P_i}} = P = m\mu - \sum\limits_{i = 1}^m {\frac{{{\sigma ^2}}}{{{\lambda ^2}}}} i=1mPi=P=mμi=1mλ2σ2
得到: μ = P + ∑ i = 1 m σ 2 λ 2 m \mu = \frac{{P + \sum\limits_{i = 1}^m {\frac{{{\sigma ^2}}}{{{\lambda ^2}}}} }}{m} μ=mP+i=1mλ2σ2
在这里插入图片描述
也就是说,当已知csi(信道状态信息时),发送端会选择好的信道,给它分配大功率,过程如图示
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信仿真爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值