CVer儿
开源让世界更美好,闭源让人更富裕
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
trasnformer seg
【代码】trasnformer seg。原创 2025-06-05 01:16:25 · 44 阅读 · 0 评论 -
openslide处理显微镜病理SVS切片
【代码】openslide处理显微镜病理SVS切片。原创 2025-04-14 16:01:47 · 142 阅读 · 0 评论 -
实战 | 红酒瓶标签曲面展平+文字识别(附源码)
本文的目标是让计算机从一张简单的照片中读取一瓶红酒上标签文字的内容。因为酒瓶标签上的文本在圆柱体上是扭曲的,我们无法直接提取并识别字符,所以一般都会将曲面标签展平之后再做识别,以提升准确率。原创 2025-04-14 15:52:52 · 78 阅读 · 0 评论 -
【无标题】
正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上传…重新上传取消正在上翻译 2025-03-18 11:26:55 · 59 阅读 · 0 评论 -
知识蒸馏知识点
1基于kl散度计算,学生模型需要用log_softmax处理。2 为了避免温度对梯度的影响,loss*T**2。原创 2025-02-21 19:28:49 · 110 阅读 · 0 评论 -
MambaMorph brain MR-CT
计算局部归一化互相关损失,用于衡量两个图像之间的相似性。: 通常用于图像配准任务,通过最大化图像之间的局部相似性来优化配准结果。: 使用卷积操作计算局部区域的均值和方差,然后计算归一化互相关。: 计算均方误差损失,用于衡量预测值和真实值之间的差异。: 适用于回归任务,如图像重建或配准。: 直接计算预测值和真实值之间的平方差,并取平均。: 计算Dice系数损失,用于衡量分割结果的重叠度。: 常用于医学图像分割任务,评估分割结果与真实标签的重叠程度。原创 2025-02-11 15:02:32 · 143 阅读 · 0 评论 -
超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准
摘要:磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改进受到缺乏准确标注的MRI数据集的限制。通过接受根治性前列腺切除术的患者数据,可以将切除前列腺的数字化组织病理学图像与术前MRI进行空间对齐。这种对齐通过将组织病理学图像中的癌症投影到MRI上,有助于在MRI上绘制详细的癌症标签。原创 2025-01-23 18:01:31 · 695 阅读 · 0 评论 -
restormer和VIT3D编解码tf结构模型
【代码】restormer和VIT3D编解码tf结构模型。原创 2025-01-19 17:32:34 · 284 阅读 · 0 评论 -
gradcam
【代码】gradcam。原创 2024-12-24 00:09:27 · 84 阅读 · 0 评论 -
torch如何产生3d随机变形场和仿射变换(DVFs)和grid_sample替代
生成噪声后,需要将其转化为变形场,变形场通常是一个与图像尺寸相同的三维向量场,包含每个点的位移信息。创建一个网格:为输入图像创建一个与之对应的离散网格,网格中的每个点代表图像中的一个像素或体素。为每个网格点生成位移:使用生成的噪声为每个网格点分配一个位移向量,通常是一个三维向量(x, y, z)。原创 2024-12-07 23:39:13 · 1222 阅读 · 0 评论 -
生成2d随机形变场
为了在形变场中同时包含平移、旋转和随机正余弦形变,原创 2024-12-19 00:15:33 · 313 阅读 · 0 评论 -
生成纹理边缘保持loss记录
这里的梯度一致性是通过使用二维卷积操作来计算 ,卷积核是一个3x3的矩阵,其中中心值(对应图像中心的像素)的权重为8,其余为-1。这种卷积核可能用于检测图像中的边缘或梯度变化。计算一个边缘感知的损失值。该函数使用Laplacian算子来检测输入和目标图像的边缘,并计算它们之间的差异作为损失。总变异损失(Total Variation Loss)用于量化图像中相邻像素之间的变化程度,以鼓励平滑。1 计算两个图的ncc 值。原创 2024-11-27 14:51:15 · 136 阅读 · 0 评论 -
affine_grid转onnx issue记录
affine_grid的官方链接: torch.nn.functional.affine_grid — PyTorch 2.5 documentation [ONNX] Support affine_grid_generator · Issue #30563 · pytorch/pytorch · GitHub直接转目前都不支持,下面根据上述链接另辟蹊径:方案二:实现affine_grid和grid_sample 替换网格采样和仿射网格生成器以导出到ONNX,在替换了PyTor原创 2024-11-25 18:16:18 · 114 阅读 · 0 评论 -
SCTransNet验证测试
SCTransNet 是PRCV 2024、ICPR 2024 Track 1、ICPR 2024 Track 2 三项比赛冠军方案的 Baseline, 同时也是多个优胜算法的Baselines.原创 2024-11-19 17:26:25 · 380 阅读 · 0 评论 -
nibabel读取参考nifty的空间信息,把mask数据转为nifty
【代码】nibabel读取参考nifty的空间信息,把mask数据转为nifty。原创 2024-11-19 10:44:07 · 82 阅读 · 0 评论 -
语义分割中OHEM在线困难样本挖掘(Online Hard Example Mining)
在线困难样本挖掘(Online Hard Example Mining, OHEM)是一种用于提高深度学习模型鲁棒性和性能的技术,特别是在目标检测、语义分割等任务中。其核心思想是在每个训练步骤中,选择最难分类的样本来进行梯度更新,从而迫使模型更好地学习这些困难样本,提高整体性能。原创 2024-11-18 19:20:53 · 281 阅读 · 0 评论 -
3D Faster R-CNN示意图
This is a modified version of Caffe which supports the 3D Faster R-CNN framework and 3D Region Proposal Network as described in our paper [Efficient Multiple Organ Localization in CT Image using 3D Region Proposal Network](Early access on IEEE Transactions原创 2024-11-18 14:13:17 · 82 阅读 · 0 评论 -
vs2017编译xtensor
遇见问题:xtl 库里面有xtlConfig.cmake.in但是没有xtlConfig.cmake如果你在xtl库的源代码中找到了文件,但没有找到文件,这通常意味着文件需要在构建和安装过程中由模板文件生成。原创 2024-11-11 19:16:59 · 416 阅读 · 0 评论 -
采用imgaug对语义分割数据增强
【代码】采用imgaug对语义分割数据增强。原创 2024-11-04 16:54:19 · 138 阅读 · 0 评论 -
win10下MMSegmentation自定义数据集
在路径.\mmsegmentation-1.2.2\configs\_base_\datasets 参考potsdam.py新建自定义数据加载器wzl.py。采用twins_pcpvt-s_fpn模型,在路径.\mmsegmentation-1.2.2\configs\_base_\models下修改采用普通BN。在路径.\mmsegmentation-1.2.2\mmseg\datasets\__init__.py 文件中注册刚才定义的数据加载器。我的数据有两个类别,均为jpg格式。原创 2024-11-04 14:06:58 · 182 阅读 · 0 评论 -
itk vessel Hessian矩阵
category.原创 2024-10-12 19:04:00 · 128 阅读 · 0 评论 -
Transformer | Lung-DETR 提升图像识别率 !
在典型的阳性案例中,结节仅在CT切片中的3%中出现,使得检测变得更加复杂。本文提出了一种名为 Lung-DETR 的肺肿瘤检测方法,将肺癌检测任务视为异常检测,目标为在主要为正常数据集中的结节出现。作者的新颖方法 Lung-DETR。原创 2024-10-08 13:27:23 · 300 阅读 · 0 评论 -
gidp模块、ipam集成
【代码】【无标题】原创 2024-09-05 16:32:58 · 196 阅读 · 0 评论 -
读光-票证检测矫正模型
【读光商用矫正模型开源,快来体验吧】票证检测矫正模型在实际生活中有着广泛的需求,例如信息抽取、图像质量判断、证件扫描、票据审计等领等场景,可以大幅提高工作效率和准确性。本次读光团队支持任意角度、多卡证票据等混贴场景,同时检测输入图像任意角度的多个子图区域;基于海量真实数据训练,效果满足国内常见的卡证票据的检测矫正需求;支持子图区域复印件判断、四方向判断,准确率高达 99%;矫正效果、推理速度远高于 modelScope 同类模型,详见本文测试报告。字段名称说明polygons。原创 2024-08-26 15:05:35 · 343 阅读 · 1 评论 -
用于图像增强的学习型可控ISP
CRISP的总体架构如下图所示,包括风格自编码器(style-autoencoder)和一个ISP(Image Signal Processor)。ISP的参数是由风格自编码器(style autoencoder)中的decoder部分生成的。此架构旨在通过调整ISP的参数生成多种高质量的图像风格。选用的5个ISP模块(Dgain, WB, CCM, gamma, tone mapping)只会改变亮度和色调等,不会改变图像内容。且这些模块的操作是可导的,因此允许通过梯度传播来训练网络。原创 2024-07-16 10:35:06 · 753 阅读 · 0 评论 -
AMSA-UNet | 基于自注意力的多尺度 U-Net 提升图像去模糊性能
传统的单尺度U-Net在去模糊过程中常常会导致空间信息的丢失,这影响了去模糊的准确性。此外,由于卷积方法在捕捉长距离依赖方面的局限性,恢复图像的质量下降。为了解决上述问题,提出了一种基于自注意力的非对称多尺度U-Net(AMSA-UNet)来提高去模糊方法在准确性和计算复杂度方面的性能。通过引入多尺度U形结构,网络可以在全局层面关注模糊区域,并在局部层面更好地恢复图像细节。原创 2024-07-02 17:39:26 · 625 阅读 · 0 评论 -
Nature子刊 | 基于遥感和U-Net绘制6亿棵树木,并发现过去十年印度农田树木严重减少
题目:Severe decline in large farmland trees in India over the past decade期刊:Nature Sustainability论文:https://www.nature.com/articles/s41893-024-01356-0结果数据:年份:2024作者单位:哥本哈根大学,萨克雷大学,曼彻斯特大学等。原创 2024-06-28 13:37:47 · 257 阅读 · 0 评论 -
Segment anything in medical images
通过在广泛的任务中提供准确、高效的分割,MedSAM 在加速诊断工具的发展和治疗计划的个性化方面具有巨大的潜力。在两种不同的数据集大小上训练了MedSAM:10000 (10K) 和 100,000 (100K) 图像,并将它们的性能与默认的 MedSAM 模型进行了比较。:从多个来源(如TCIA、Kaggle、Grand-Challenge等)整合了医学图像分割数据集,这些数据集都包含了由人类专家提供的分割注释,确保了数据的质量和准确性。:在图像和掩模的调整过程中,根据需求选择了不同的插值方法。原创 2024-06-18 16:35:42 · 374 阅读 · 0 评论 -
基于新型切片轮廓转换超分辨率的深度生成网络的高分辨率3D MRI重建
通过训练深度生成网络实现了5.5倍的超分辨率重建,与SMORE超分辨率重建方法和常规降采样训练的网络相比,该研究的SPTSR框架在50个测试案例中展示了最佳的整体图像质量。该研究所提出的SPTSR框架的目标是从单个2D切片堆叠的一个方向(例如,冠状MRI扫描)进行训练,并利用正交方向(例如,轴向MRI扫描)推理各向同性高分辨率的3D成像。与简单的双线性插值相比,SMORE和KS-ZF训练的网络去除了大部分阶梯和模糊伪影,但未能重建前列腺内的小结构,并且存在放大的噪声。因此,通过平面的推理。原创 2024-06-18 16:25:18 · 446 阅读 · 0 评论 -
结合小波变换的遥感语义分割网络,融合频域和空间域特征提升分割效果
题目:SFFNet: A Wavelet-Based Spatial and Frequency Domain Fusion Network for Remote Sensing Segmentation论文:http://arxiv.org/abs/2405.01992代码:https://github.com/yysdck/SFFNet年份:2024。原创 2024-05-15 14:39:26 · 1105 阅读 · 0 评论 -
GRFB-UNet:一种新的多尺度注意力网络,用于铺路分割
因此,识别铺装的形状和位置以支持视障人士的移动性是相当有意义的,而视觉分割技术就适合这项任务。为了有效提高触觉铺装分割的精度和鲁棒性,该文提出一种结合UNet网络和多尺度特征提取的新型触觉铺装分割方法。在UNet网络中增加群感受野块(GRFB)的结构,得到触觉铺装的多尺度感受野。同时,在各组卷积后采用小尺度卷积,实现跨信道信息交互与整合,旨在提取更丰富的高级特征。本文构建了各种场景下的铺路数据集,并进行了标记以进行实验评估。实验结果表明,所提网络在铺装分割方面取得了较好性能,为铺路检测提供了有价值的参考。原创 2024-05-14 11:17:55 · 450 阅读 · 1 评论 -
UNetformer实现遥感城市场景影像的高效语义分割
UNetFormer:一种类似UNet的转换器,用于遥感城市场景影像的高效语义分割,ISPRS。此外,还包括用于卫星、航空图像和无人机图像分割。原创 2024-05-14 10:44:09 · 796 阅读 · 0 评论 -
极简代码遥感语义分割,结合GDAL从零实现
定义的是经典的U-Net网络,相对于论文原模型稍作了修改。原文DOI:10.1007/978-3-319-24574-4_28。原创 2024-05-08 09:50:05 · 230 阅读 · 0 评论 -
gradcam: Class Activation Maps for Semantic Segmentation
【代码】gradcam: Class Activation Maps for Semantic Segmentation。原创 2024-04-10 17:05:00 · 103 阅读 · 0 评论 -
使用增强型 ResUnet 进行遥感建筑物提取
修改残差 U-Net (Modified ResUnet) 并应用后处理提取大田地区的城市建筑。原创 2024-03-22 17:56:17 · 243 阅读 · 0 评论 -
PROSTATEx-2 上前列腺癌的 3D CNN 分类
结果表明,虽然很难单独从每种模式判断病变应该是阳性还是阴性,但当应该是阳性(真阳性和假阴性)时,堆叠模式显示的白色多于灰色,并且显示的灰色多于病变。由于所有患者的 T2 序列的分辨率并不相同,因此图像的每个像素代表现实世界长度中的不同毫米。(顶行)未配准的 T2、ADC、DWI 图像,(btm 行)共同配准的 T2、ADC、DWI,描绘为图像文件的三个通道。在病变中心裁剪所需数量的像素后,所有裁剪图像的大小都会调整为 60X60 分辨率,这是裁剪后最常见的分辨率。未使用 T2 矢状序列,即前列腺的侧视图。原创 2023-10-23 18:25:13 · 1586 阅读 · 0 评论 -
an adaptive shuffle attention (ASA) module
F-UNet++:基于多用途自适应shuffle注意力和复合多输入重建网络的遥感图像融合”,在这项工作中,自适应洗牌注意力(ASA)模块和优化的 UNet++ 结合在融合 UNet++(F-UNet++)框架中,用于解决 MS 和 PAN 图像融合问题。原创 2023-07-26 13:56:07 · 614 阅读 · 0 评论 -
裂缝处理优化策略
将原始数据标签处理为两类,正常和裂缝原始图片均为320*480,使用的显卡为2080,内存足够,不进行图片大小调整。原创 2023-07-25 17:17:14 · 395 阅读 · 0 评论 -
libtorch waternet水下图像增强模型和基准数据集
此外,我们提出了一个在此基准上训练的水下图像增强网络(称为 Water-Net)作为基线,这表明了所提出的 UIEB 用于训练卷积神经网络(CNN)的泛化。此外,我们提出了一个在此基准上训练的水下图像增强网络(称为 Water-Net)作为基线,这表明了所提出的 UIEB 用于训练卷积神经网络(CNN)的泛化。此外,我们提出了一个在此基准上训练的水下图像增强网络(称为 Water-Net)作为基线,这表明了所提出的 UIEB 用于训练卷积神经网络(CNN)的泛化。60 张具有挑战性的水下图像。原创 2023-07-19 18:30:15 · 2060 阅读 · 0 评论 -
UNet-U2Net-MultiResUNet-for-vessel-Segmentation视网膜血管分割
在本研究中,使用了 U-Net 模型(生物医学图像分割最成功的深度学习模型)和受 U-Net 架构启发的 U2-Net 模型。在本研究中,scimage、sci-kit learn、OpenCV、albumentations 库用于使用 U-Net、U2-Net 模型 Tensorflow 背景的 Keras 进行数据增强和预处理。除了 U-Net 的这些功能之外,U2-Net 可以更好地捕获浅层和深层的局部和整体信息,无论分辨率如何 [3]。准确度、灵敏度、特异性、精密度、ppv、f1 分数。翻译 2023-07-19 18:22:36 · 383 阅读 · 0 评论