关系数据理论
第一范式
- 概念:每一个分量必须是不可分割的数据项;
- 规范化:一个低一级范式的关系模式通过模式分解可以转换为若干个高一级范式的关系模式的集合,这个分解过程称为规范化。
第二范式
- 概念:关系R是属于第一范式的,且每个非主属性都完全函数依赖于任何一个候选码,则关系R属于第二范式;
- 函数依赖:关系R(U) 是属性集U上的关系模式,X、Y为U的子集。对于R的任意一个可能关系r ,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,称Y函数依赖于X。
- 非平凡的函数依赖:x->Y,且Y不属于X,则称X->Y 是非平凡的函数依赖;
- 平凡的函数依赖:x->Y,且Y属于X,则称X->Y 是平凡的函数依赖;
- 一个关系不属于第二范式可能产生的问题
- 插入异常:插入元组时必须要码值,而码值为空;
- 删除异常:弱删除的为主属性,会删除元组,使得所有信息全部删除(丢失数据)
- 修改复杂;
第三范式
- 概念:R<U,F> 属于第一范式,若R中不存在这样的码X,属性组Y及非主属性Z(Y不属于Z)使 X->Y, Y->Z 成立,Y->x不成立则称R属于第三范式;
- 意义:每个非主属性既不传递依赖于码,也不部分依赖于码;
BC范式
- 概念:R 处于第一范式,若X->Y 且Y不属于X时,X必含有码,则R属于BC范式;
- 意义:
- 所有非主属性都完全函数依赖于码;
- 所有主属性对每一个不包含他的码都是完全函数依赖;
- 没有任何属性完全函数依赖于非码的任何一组属性;
- 注:第三范式的不彻底表现在可能存在主属性对码的部分函数依赖和传递函数依赖。