机器学习1线性回归算法

在这里插入图片描述
概述:
对于X1,X2特征值作关于Y的拟合曲线
Y=参数0 + X1 * 参数1 + X2 * 参数2
红色点为真实数据值
在这里插入图片描述
误差:
真实值和预测值之间肯定是要存在差异的
对于每个样本:y (i)= 参数 * x(i) + p(i)
误差p(i)独立并且具有相同的分布,并且服从均值为0方差为 的高斯分布
独立:相互没关系
同分布:符合相同规则
高斯分布:大多数情况下浮动不会太大,极小情况下浮动大,符合正常情况
在这里插入图片描述
似然函数:(给定参数后,变量符合真实值的概率)
在这里插入图片描述
对数似然:(乘法不好求,转换为加法)
在这里插入图片描述
展开化简:
在这里插入图片描述
最小二乘法:
(真实值与预测值 差距越小越好)
在这里插入图片描述
目标函数求解:
在这里插入图片描述
评估:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值