1. 题目
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 true ;不是,则返回 false 。
示例 1:
输入:19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:
输入:n = 2
输出:false
2. 题解
2.1 解法1: 哈希表
注意: 中间产生的数有两种情况, 一种是能到达终点即平方和为 1, 第二种为产生循环, 会重复的平方和为某个数
所以可以使用哈希表来记录判重
class Solution {
public boolean isHappy(int n) {
Set<Integer> set = new HashSet<>();
while (n != 1 && !set.contains(n)) {
set.add(n);
n = getNext(n);
}
return n == 1;
}
public int getNext(int n) {
int sum = 0;
while (n != 0) {
int temp = n % 10;
n /= 10;
sum += temp * temp;
}
return sum;
}
}
2.2 解法2: 快慢指针
class Solution {
public boolean isHappy(int n) {
int fast = getNext(n), slow = n;
while (fast != 1 && fast != slow) {
fast = getNext(getNext(fast));
slow = getNext(slow);
}
return fast == 1;
}
public int getNext(int n) {
int sum = 0;
while (n != 0) {
int temp = n % 10;
n /= 10;
sum += temp * temp;
}
return sum;
}
}