1. 题目
给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:
给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
要求算法的空间复杂度为O(n)。
你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。
Related Topics 位运算 动态规划
👍 745 👎 0
2. 题解
2.1 解法1: 暴力法(遍历+按位与)
class Solution {
public int[] countBits(int n) {
int[] ans = new int[n + 1];
for (int i = 1; i < n + 1; i++) {
ans[i] = countOne(i);
}
return ans;
}
/**
* 按位与计算1的个数
*
* @param num
* @return
*/
public int countOne(int num) {
int count = 0;
int flag = 1;
while (flag != 0) {
if ((num & flag) != 0) {
count++;
}
flag <<= 1;
}
return count;
}
}
参考: 一步步分析推导出动态规划
2.2 解法2: 动态规划
- 状态数组: dp[i] 代表第 i 个整数的比特位个数
- 递推方程:
- 当 i 为奇数, 其比特位个数一定比前面那个偶数多一个 1, 所以为 dp[i-1]+1
- 当 i 为偶数, 偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的
- 初始化: dp[0]=0, 结果集即为 dp数组
class Solution {
public int[] countBits(int n) {
int[] dp = new int[n + 1];
for (int i = 1; i <= n; i++) {
if (i % 2 == 1) {
dp[i] = dp[i - 1] + 1;
} else {
dp[i] = dp[i / 2];
}
}
return dp;
}
}
参考:清晰的思路