算法---LeetCode 338. 比特位计数

1. 题目

原题链接

给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:

给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
要求算法的空间复杂度为O(n)。
你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。

Related Topics 位运算 动态规划
👍 745 👎 0

2. 题解

2.1 解法1: 暴力法(遍历+按位与)

    class Solution {
        public int[] countBits(int n) {
            int[] ans = new int[n + 1];
            for (int i = 1; i < n + 1; i++) {
                ans[i] = countOne(i);
            }
            return ans;
        }
        /**
         * 按位与计算1的个数
         *
         * @param num
         * @return
         */
        public int countOne(int num) {
            int count = 0;
            int flag = 1;
            while (flag != 0) {
                if ((num & flag) != 0) {
                    count++;
                }
                flag <<= 1;
            }
            return count;
        }
    }

参考: 一步步分析推导出动态规划

2.2 解法2: 动态规划

  1. 状态数组: dp[i] 代表第 i 个整数的比特位个数
  2. 递推方程:
  • 当 i 为奇数, 其比特位个数一定比前面那个偶数多一个 1, 所以为 dp[i-1]+1
  • 当 i 为偶数, 偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的
  1. 初始化: dp[0]=0, 结果集即为 dp数组
    class Solution {
        public int[] countBits(int n) {
            int[] dp = new int[n + 1];

            for (int i = 1; i <= n; i++) {
                if (i % 2 == 1) {
                    dp[i] = dp[i - 1] + 1;
                } else {
                    dp[i] = dp[i / 2];
                }
            }
            return dp;
        }

    }

参考:清晰的思路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值