漫谈数据结构【菜鸟与老鸟的对话】
文章平均质量分 79
从基础到高级,通过对话的方式让大家熟悉数据结构中的关键知识点。
AI让世界更懂你
计算机科学与技术专业博士,主要研究方向为人工智能、自然语言处理、大规模语言模型和对话系统等。曾与微软小冰、微软小娜共同工作。兴趣广泛,包括并不限于人工智能,心理学,认知科学,语言学,数学,天文学等。让我们一起和AI,改进世界!
展开
-
25_先进先出与后进先出结合问题
老鸟:首先,FIFO(First In, First Out)是一种数据结构原理,最早进入的数据会最早被处理,比如队列。相反,LIFO(Last In, First Out)则是后进先出,类似堆栈,最后进入的数据会最早被处理。这两种结构在不同场景下各有用处。菜鸟:那它们怎么结合在一起呢?老鸟:一个常见的应用场景是需要同时支持快速的插入、删除和访问最新元素。我们可以通过双端队列(Deque)来实现,这种数据结构支持从两端进行插入和删除操作。老鸟。原创 2024-09-11 02:06:00 · 489 阅读 · 0 评论 -
24_竞赛中的高效并查集
老鸟查找(Find)和合并(Union)。查找操作用于确定一个元素属于哪个集合,合并操作用于将两个不同的集合合并成一个集合。在竞赛中,我们通常会对并查集进行一些优化,使其更加高效。菜鸟:听起来有点抽象,能不能给我举个例子?老鸟:当然。假设我们有一些节点,每个节点代表一个用户。最开始,每个用户都在自己的独立群组中。我们可以通过合并操作将不同用户的群组合并起来,通过查找操作检查两个用户是否在同一个群组。老鸟:今天我们讨论了并查集的基本概念、优化方法及其应用场景。原创 2024-09-11 02:04:43 · 454 阅读 · 0 评论 -
23_线段树的应用与优化
老鸟:好的。线段树是一种二叉树,用于存储区间或线段的信息。它允许你在对数组进行区间查询和更新时,都能在对数时间内完成。让我们一步步来了解它吧。老鸟:今天我们通过对话,了解了线段树的基本概念、构建方法、优化技巧以及适用场景。线段树是一种非常强大的数据结构,能够在对数时间内完成区间查询和更新操作,非常适合处理大规模区间操作。原创 2024-09-11 02:03:33 · 572 阅读 · 0 评论 -
22_图论中的高级数据结构
菜鸟:听起来不错,能先讲讲邻接表吗?老鸟:好的。邻接表是一种更为内存友好的图表示方法。相比邻接矩阵,邻接表的空间复杂度是O(V + E),其中V是顶点数,E是边数。在邻接表中,每个顶点都会有一个列表,列表中存储与该顶点相邻的所有顶点。# 邻接表的表示方法graph = {菜鸟:这个看起来更直观一些,查询一个顶点的邻居也很方便。老鸟:是的,而且插入和删除操作也相对简单。让我们继续深入一些,看看如何使用邻接表进行图的遍历。老鸟:今天我们讨论了邻接表、DFS、BFS、以及Dijkstra算法。原创 2024-09-11 02:02:22 · 718 阅读 · 0 评论 -
21_动态规划与数据结构结合
老鸟:假设你有一个数组arr,你需要多次查询某个子数组arr[i:j]的和。直接计算会很慢,我们可以用动态规划预处理,再用一种数据结构来快速查询。菜鸟:听起来不错,但具体怎么做呢?老鸟:我们可以先构建一个数组prefixSum,其中表示数组arr从起始位置到i的和。这样每次查询arr[i:j]的和时,可以用来快速计算。菜鸟:这样确实能减少计算量,但构建prefixSum数组需要什么操作呢?老鸟:好问题。我们来看看代码示例。老鸟:今天我们讨论了动态规划与数据结构结合的应用,通过prefixSum。原创 2024-09-11 02:01:15 · 617 阅读 · 0 评论 -
20_二叉搜索树的优化
菜鸟: 二叉搜索树?能具体讲讲吗?老鸟: 当然。二叉搜索树是一种特殊的二叉树,它的每个节点都有一个键值,并且每个节点的左子树的所有键值都小于该节点的键值,右子树的所有键值都大于该节点的键值。这种结构使得查找、插入和删除操作都可以在平均O(log n)的时间复杂度内完成。菜鸟: 听起来不错。那具体怎么实现呢?老鸟: 总结一下,二叉搜索树是一种高效的数据结构,可以优化插入和查找操作的性能。通过实现平衡二叉搜索树,我们可以确保操作的时间复杂度在O(log n)内。原创 2024-09-11 01:58:39 · 371 阅读 · 0 评论 -
19_字典树与字符串匹配
老鸟:字典树是一种树形结构,每个节点代表一个字符。通过节点的连接,我们可以形成一个单词。比如,单词 “apple” 在字典树中就是从根节点依次连接 ‘a’ -> ‘p’ -> ‘p’ -> ‘l’ -> ‘e’。菜鸟:听起来有点抽象,能具体一点吗?老鸟:没问题,让我们通过代码来一步步构建字典树。菜鸟:明白了,TrieNode是字典树的节点,每个节点包含一个子节点的字典和一个标识是否是单词结尾的布尔值。老鸟:对的。接下来,我们来看看如何向字典树中插入单词。老鸟。原创 2024-09-11 01:57:37 · 318 阅读 · 0 评论 -
18_并查集优化
老鸟:并查集是一种树型数据结构,用于处理不相交集合的合并及查询问题。常用的操作是“查找(Find)”和“合并(Union)”。通过优化这些操作,我们可以将其复杂度降到近乎常数时间。菜鸟:听起来很高效。具体怎么操作呢?老鸟:我们先从基本的并查集结构开始,然后再讲如何优化。假设我们有一个数组parent,其中parent[i]表示元素i的父节点。初始时,每个元素都是它自己的父节点,即每个元素单独成一个集合。= rootY:菜鸟:上面的代码看起来比较简单,但为什么find。原创 2024-09-11 01:53:52 · 1008 阅读 · 0 评论 -
17_哈希表冲突处理
老鸟:首先,我们来看一下哈希表冲突处理的两种主要方法:开放地址法和链地址法。我们先从链地址法开始。菜鸟:链地址法?是什么意思?老鸟:简单来说,链地址法是为每个哈希表槽位维护一个链表(或其他数据结构),所有映射到同一槽位的元素都存储在这个链表中。老鸟:总结一下,哈希表冲突处理主要有链地址法和开放地址法。链地址法使用链表存储冲突元素,而开放地址法则在哈希表内寻找新的空槽位。每种方法有其优缺点,适用于不同的场景。菜鸟你能推荐一些延伸阅读的资源吗?老鸟:当然可以。《算法导论》——哈希表章节。原创 2024-09-11 01:37:08 · 417 阅读 · 0 评论 -
16_LRU缓存机制
老鸟:LRU缓存的核心思想是,当缓存满了之后,淘汰最近最少使用的数据。这样可以保证我们经常访问的数据保留在缓存中,从而减少数据库的访问次数。我们先来看看一个简单的实现吧。菜鸟:听起来不错,能具体讲讲它是怎么操作的吗?老鸟:好的,我们通过一个Python代码示例来一步步理解LRU缓存的工作原理。老鸟:今天我们讨论了LRU缓存机制的基本原理、实现方法及其优化。LRU缓存通过淘汰最近最少使用的数据来提高数据访问效率。我们还用具体的代码示例讲解了如何实现和优化LRU缓存,希望你能有一个更深入的理解。菜鸟。原创 2024-09-11 01:36:32 · 800 阅读 · 0 评论 -
15_分布式数据结构
老鸟:我们先从一个简单的例子开始。假设你有一个大表格,数据量非常大,单台机器处理起来很慢。这时候,如果我们把表格分成几部分,分别放到不同的机器上去处理,是不是就会快很多?菜鸟:听起来是这样,但具体怎么做呢?老鸟:这就是分布式数据结构的核心思想。通过将数据分片,分布在多个节点上进行并行处理。我们来看看一个简单的代码示例。老鸟:今天我们讨论了分布式数据结构的基本概念、操作细节和一些优化方法。你可以进一步学习一致性哈希、分布式文件系统(如HDFS)和分布式数据库(如Cassandra、MongoDB)。原创 2024-09-11 01:33:06 · 570 阅读 · 0 评论 -
14_L3缓存友好的数据结构
老鸟:L3缓存是CPU缓存层次结构中的第三层,通常比L1和L2缓存大,但访问速度稍慢。L3缓存友好的数据结构设计旨在最大限度地减少缓存未命中,从而提升性能。菜鸟:那这些数据结构有什么特点呢?老鸟:主要特点是数据局部性好,也就是说,数据在内存中是连续存储的,这样能更好地利用缓存行。我们可以从一个简单的例子开始,比如数组和链表的对比。老鸟:总结一下,L3缓存友好的数据结构通过提升数据局部性来提高性能。常见的有数组、等。它们在大数据处理和高性能计算中非常有用。但在实际应用中,需要权衡性能、可维护性和具体需求。原创 2024-09-11 01:30:06 · 739 阅读 · 0 评论 -
13_动态数组与缓存优化
老鸟:首先,我们来看看动态数组。动态数组是一种能够自动调整其大小的数组。你知道它是如何工作的么?菜鸟:不是很清楚,能具体讲讲吗?老鸟:当然。动态数组在初始化时分配一个固定大小的内存,当需要插入元素时,如果数组已满,它会分配一个更大的内存块并将现有元素复制过去。这样一来,它就能容纳更多的元素了。菜鸟:听起来不错,那缓存优化又是怎么回事?老鸟:缓存优化是指利用 CPU 缓存来加速数据访问。动态数组的连续内存分配有利于缓存优化,因为数据在内存中是连续存储的,这样 CPU 可以高效地预取数据。老鸟。原创 2024-09-11 01:27:24 · 573 阅读 · 0 评论 -
12_持久化数据结构
老鸟:持久化数据结构是一种在更新数据时不会破坏原数据结构的技术。它允许你保留旧版本的数据结构,同时生成一个新的版本。这样,你可以在需要时回溯到任何一个历史版本。持久化数据结构分为部分持久化和完全持久化。部分持久化只允许访问最新版本,而完全持久化允许访问所有历史版本。菜鸟:听起来很有意思,这个东西怎么实现呢?老鸟:我们可以通过一些巧妙的技术来实现,比如结构共享。举个简单的例子,我们来看看如何在纯函数式编程中实现持久化链表。老鸟:总结一下,持久化数据结构通过结构共享,实现了在不破坏原数据结构的基础上进行更新。原创 2024-09-11 01:26:28 · 581 阅读 · 0 评论 -
11_跳表(Skip List)
老鸟:跳表通过在链表上增加多级索引,使得查找、插入和删除操作的平均时间复杂度都可以达到O(log n)。我们先从基本概念开始。菜鸟:听起来不错,能具体解释一下吗?老鸟:当然。假设我们有一个有序链表,跳表在这个基础上增加了多层索引。第一层是原始链表,第二层是每两个节点挑选一个节点作为索引,第三层是第二层中每两个节点挑选一个节点作为索引,以此类推。菜鸟:这样做的好处是什么?老鸟:这样可以大幅减少查找的步骤。假设我们要查找某个元素,可以从最高层索引开始,逐层向下查找,大大减少了需要遍历的节点数。老鸟。原创 2024-09-11 01:15:07 · 737 阅读 · 0 评论 -
10_线段树与树状数组
老鸟:那我们先从树状数组(Fenwick Tree)开始吧。树状数组是一种可以高效处理前缀和查询和单点更新的数据结构。菜鸟:听起来不错,那它是怎么工作的?老鸟:树状数组通过维护一个辅助数组BIT,可以在 O(log n) 时间复杂度内完成前缀和查询和单点更新。具体来说,树状数组利用了二进制的特性,通过一些巧妙的索引运算来实现快速更新和查询。老鸟:总结一下,树状数组适用于前缀和查询和单点更新,线段树则适用于更复杂的区间查询和更新。它们分别是 O(log n) 的时间复杂度,非常适合处理大规模数据。菜鸟老鸟。原创 2024-09-11 01:14:31 · 326 阅读 · 0 评论 -
09_图与最短路径
老鸟:首先,我们来看一下什么是图。图是一种数据结构,由节点(也叫顶点)和边组成。节点代表实体,边代表它们之间的连接。图可以是有向的或无向的,有权重的或无权重的。菜鸟:那最短路径呢?老鸟:最短路径是指在图中从一个节点到另一个节点的路径中,边的总权重最小的路径。常用的最短路径算法有Dijkstra算法、Bellman-Ford算法等。接下来,我们用Dijkstra算法来找最短路径。老鸟:今天我们讨论了图和最短路径的概念,介绍了如何使用Dijkstra算法及其优化版本来求解最短路径。希望这些内容对你有所帮助。原创 2024-09-11 01:10:02 · 343 阅读 · 0 评论 -
01_数组与链表
老鸟:数组是一种线性数据结构,用于存储相同类型的元素。数组的元素在内存中是连续存储的,所以可以通过索引快速访问。# 数组示例菜鸟:嗯,这个我知道,可以通过索引快速访问,比如array[2]就可以得到3。老鸟:对,但插入和删除数据时,数组并不高效。如果你要在数组中间插入或删除元素,需要移动其他元素。老鸟:总结一下,数组和链表各有优缺点。数组适合快速访问元素,但在插入和删除操作上性能较差。链表适合频繁插入和删除,但在随机访问时性能较差。原创 2024-09-11 00:25:16 · 461 阅读 · 0 评论 -
08_并查集
并查集是一种数据结构,用于处理不相交集合的合并(Union)和查找(Find)操作。Find和Union。Find操作用于查找元素所属的集合,Union操作用于合并两个集合。是的,总结一下,并查集是一种处理不相交集合操作的数据结构,通过路径压缩和按秩合并,可以在近似常数时间内完成查找和合并操作。你可以继续深入学习一些相关的书籍和文档,比如《算法导论》中关于并查集的章节,或者一些高级的数据结构与算法书籍。原创 2024-09-11 01:07:34 · 505 阅读 · 0 评论 -
07_字典树(Trie)
菜鸟:字典树?那是什么东西?老鸟:字典树是一种树形结构,特别适合处理字符串。它能高效地进行插入、删除和查找操作。每个节点代表一个字符,路径从根节点到某个节点的字符串就是该节点代表的字符串。菜鸟:听起来有点抽象,你能给我举个例子吗?老鸟catcardog。root/ \c d/ \ \a a o/ \ \t r g老鸟:总的来说,字典树在处理字符串集合时有很大的优势,尤其是前缀匹配操作。它的插入、查找和删除操作时间复杂度都为 O(m),其中 m 是单词的长度。原创 2024-09-11 01:06:47 · 1195 阅读 · 0 评论 -
06_自平衡二叉搜索树
老鸟:当然。自平衡二叉搜索树是一种在每次插入或删除操作后,通过旋转操作保持树的平衡,使得树的高度保持在 (O(\log n)) 的数据结构。常见的自平衡二叉搜索树有AVL树和红黑树。我们先从AVL树说起吧。菜鸟:好的,AVL树有什么特点?老鸟:AVL树是一种严格平衡的二叉搜索树,任何一个节点的两个子树的高度差不会超过1。这使得AVL树的查找、插入和删除操作的时间复杂度都可以保持在 (O(\log n))。老鸟:今天我们讨论了自平衡二叉搜索树,特别是AVL树。我们了解了其核心操作、适用场景及其复杂度分析。原创 2024-09-11 01:06:07 · 622 阅读 · 0 评论 -
05_堆与优先队列
老鸟:当然可以。首先,我们来了解一下堆。堆是一种特殊的二叉树,它满足堆性质:对于最大堆,任何一个父节点的值都大于或等于其子节点的值;而对于最小堆,任何一个父节点的值都小于或等于其子节点的值。菜鸟:听起来有点抽象。堆具体能做什么呢?老鸟:堆主要用于实现优先队列。优先队列是一种特殊的队列,每次出队操作都会返回当前队列中优先级最高的元素。优先队列可以用堆来高效实现。老鸟:今天我们介绍了堆和优先队列的基本概念、核心操作及其复杂度分析。原创 2024-09-11 01:05:31 · 354 阅读 · 0 评论 -
04_树与二叉树
老鸟:首先,树是一种非线性数据结构,由节点(node)组成。每个节点包含一个值(value)和若干子节点(children)。树的顶端节点称为根节点(root),而没有子节点的节点称为叶节点(leaf)。菜鸟:明白了,那二叉树呢?老鸟:二叉树是一种特殊的树结构,每个节点最多有两个子节点,通常称为左子节点(left child)和右子节点(right child)。这种结构非常适合表达层次关系的数据。老鸟:总结一下,二叉树是一种重要的数据结构,适合表达层次关系的数据。其核心操作包括插入、查找和遍历。原创 2024-09-11 01:04:14 · 331 阅读 · 0 评论 -
03_哈希表
老鸟:哈希表,也叫散列表,是一种通过哈希函数将键映射到值的数据结构。它的核心思想是将数据分配到一个固定大小的“桶”中,通过哈希函数计算出每个键的索引位置。这样查找、插入和删除操作都能在常数时间内完成。菜鸟:那听起来很高效,能具体讲讲吗?老鸟:今天我们通过对话了解了哈希表的基本概念、实现方式及其适用场景。哈希表是一种强大的数据结构,在许多应用中都能显著提升性能。原创 2024-09-11 01:01:56 · 252 阅读 · 0 评论 -
02_栈与队列
老鸟:栈和队列都是线性数据结构,但它们有不同的操作规则。栈是后进先出(LIFO,Last In First Out)的结构,而队列是先进先出(FIFO,First In First Out)的结构。菜鸟:能具体解释一下吗?老鸟:当然。栈就像是一叠盘子,新的盘子总是放在最上面,取盘子时也是从最上面取。队列则像排队买票,先来的人先买票,后到的人排在队尾。老鸟:今天我们介绍了栈和队列的核心操作、适用场景及其复杂度分析。希望你能通过这些示例更好地理解它们。原创 2024-09-11 00:46:08 · 434 阅读 · 0 评论