03 【ArcGIS JS API + eCharts系列】实现二、三维散点图的绘制

GIS可视化 专栏收录该内容
3 篇文章 15 订阅

概述

上一篇文章中我们介绍了如何使用ArcGIS JS API和eCharts结合,在二维和三维场景下绘制迁徙图。这篇文章我们来介绍下如何在二维和三维场景下绘制散点图,其实散点图跟迁徙图一样,它的绘制也跟地理坐标系有关,所以实现思路跟迁徙图的绘制是一样的,我们来看下最终效果:

实现思路

 

迁徙图、散点图这种图表跟地理坐标关系紧密,所以仅仅通过二维普通图表绘制的方式是无法实现这类图表绘制的,所以就需要我们来扩展eCharts的相关功能,使其能够够结合最新版的ArcGIS JS API来完成地图上这类图表的绘制,eCharts官网也提供了相应的扩展插件,但这种插件并不能很好地支持我们ArcGIS JS API的高版本,所以我们在这篇文章里直接扩展了一个图层类,下面是具体的实现思路:

实现ArcGIS JS API和eCharts的结合,最最关键的是要实现两个插件库里的坐标系转换,这是重点,只要搞清楚了这一点,我们完全可以脱离地图API库的束缚,理论上可以实现eCharts跟任意地图库的结合。在此处转换坐标时我们使用了eCharts提供的registerCoordinateSystem方法,通过这个方法我们注册了一个名为"arcgis"的坐标系,里面对eCharts中的dataToPoint、pointToData等方法进行了重写,然后将这些所有内容封装为了一个EchartsLayer图层类。至于这个文件的源码,文章结尾会提供,接下来我们看一下具体的实现步骤。

 

实现步骤

1、本文所用的demo同样是基于React框架搭建的,所以我们首先基于React框架搭建一个初始化项目,然后改写src目录下的App.js这个主文件,实例化出一张二维地图,这中间用到了esri-loader插件,具体的实现过程可查看我的这篇文章【【番外】 React中使用ArcGIS JS API 4.14开发】,里面有具体的实现步骤。

2、通过上述操作实例化完一张二维地图后,我们接下来就要进行散点图的绘制操作了,在开始之前我们需要一些数据,首先是散点图中所要用到的各个城市坐标,我在此处将它们单独抽出来作为一个js文件,源文件如下:

let geoCoordMap = {
    '海门':[121.15,31.89],
    '鄂尔多斯':[109.781327,39.608266],
    '招远':[120.38,37.35],
    '舟山':[122.207216,29.985295],
    '齐齐哈尔':[123.97,47.33],
    '盐城':[120.13,33.38],
    '赤峰':[118.87,42.28],
    '青岛':[120.33,36.07],
    '乳山':[121.52,36.89],
    '金昌':[102.188043,38.520089],
    '泉州':[118.58,24.93],
    '莱西':[120.53,36.86],
    '日照':[119.46,35.42],
    '胶南':[119.97,35.88],
    '南通':[121.05,32.08],
    '拉萨':[91.11,29.97],
    '云浮':[112.02,22.93],
    '梅州':[116.1,24.55],
    '文登':[122.05,37.2],
    '上海':[121.48,31.22],
    '攀枝花':[101.718637,26.582347],
    '威海':[122.1,37.5],
    '承德':[117.93,40.97],
    '厦门':[118.1,24.46],
    '汕尾':[115.375279,22.786211],
    '潮州':[116.63,23.68],
    '丹东':[124.37,40.13],
    '太仓':[121.1,31.45],
    '曲靖':[103.79,25.51],
    '烟台':[121.39,37.52],
    '福州':[119.3,26.08],
    '瓦房店':[121.979603,39.627114],
    '即墨':[120.45,36.38],
    '抚顺':[123.97,41.97],
    '玉溪':[102.52,24.35],
    '张家口':[114.87,40.82],
    '阳泉':[113.57,37.85],
    '莱州':[119.942327,37.177017],
    '湖州':[120.1,30.86],
    '汕头':[116.69,23.39],
    '昆山':[120.95,31.39],
    '宁波':[121.56,29.86],
    '湛江':[110.359377,21.270708],
    '揭阳':[116.35,23.55],
    '荣成':[122.41,37.16],
    '连云港':[119.16,34.59],
    '葫芦岛':[120.836932,40.711052],
    '常熟':[120.74,31.64],
    '东莞':[113.75,23.04],
    '河源':[114.68,23.73],
    '淮安':[119.15,33.5],
    '泰州':[119.9,32.49],
    '南宁':[108.33,22.84],
    '营口':[122.18,40.65],
    '惠州':[114.4,23.09],
    '江阴':[120.26,31.91],
    '蓬莱':[120.75,37.8],
    '韶关':[113.62,24.84],
    '嘉峪关':[98.289152,39.77313],
    '广州':[113.23,23.16],
    '延安':[109.47,36.6],
    '太原':[112.53,37.87],
    '清远':[113.01,23.7],
    '中山':[113.38,22.52],
    '昆明':[102.73,25.04],
    '寿光':[118.73,36.86],
    '盘锦':[122.070714,41.119997],
    '长治':[113.08,36.18],
    '深圳':[114.07,22.62],
    '珠海':[113.52,22.3],
    '宿迁':[118.3,33.96],
    '咸阳':[108.72,34.36],
    '铜川':[109.11,35.09],
    '平度':[119.97,36.77],
    '佛山':[113.11,23.05],
    '海口':[110.35,20.02],
    '江门':[113.06,22.61],
    '章丘':[117.53,36.72],
    '肇庆':[112.44,23.05],
    '大连':[121.62,38.92],
    '临汾':[111.5,36.08],
    '吴江':[120.63,31.16],
    '石嘴山':[106.39,39.04],
    '沈阳':[123.38,41.8],
    '苏州':[120.62,31.32],
    '茂名':[110.88,21.68],
    '嘉兴':[120.76,30.77],
    '长春':[125.35,43.88],
    '胶州':[120.03336,36.264622],
    '银川':[106.27,38.47],
    '张家港':[120.555821,31.875428],
    '三门峡':[111.19,34.76],
    '锦州':[121.15,41.13],
    '南昌':[115.89,28.68],
    '柳州':[109.4,24.33],
    '三亚':[109.511909,18.252847],
    '自贡':[104.778442,29.33903],
    '吉林':[126.57,43.87],
    '阳江':[111.95,21.85],
    '泸州':[105.39,28.91],
    '西宁':[101.74,36.56],
    '宜宾':[104.56,29.77],
    '呼和浩特':[111.65,40.82],
    '成都':[104.06,30.67],
    '大同':[113.3,40.12],
    '镇江':[119.44,32.2],
    '桂林':[110.28,25.29],
    '张家界':[110.479191,29.117096],
    '宜兴':[119.82,31.36],
    '北海':[109.12,21.49],
    '西安':[108.95,34.27],
    '金坛':[119.56,31.74],
    '东营':[118.49,37.46],
    '牡丹江':[129.58,44.6],
    '遵义':[106.9,27.7],
    '绍兴':[120.58,30.01],
    '扬州':[119.42,32.39],
    '常州':[119.95,31.79],
    '潍坊':[119.1,36.62],
    '重庆':[106.54,29.59],
    '台州':[121.420757,28.656386],
    '南京':[118.78,32.04],
    '滨州':[118.03,37.36],
    '贵阳':[106.71,26.57],
    '无锡':[120.29,31.59],
    '本溪':[123.73,41.3],
    '克拉玛依':[84.77,45.59],
    '渭南':[109.5,34.52],
    '马鞍山':[118.48,31.56],
    '宝鸡':[107.15,34.38],
    '焦作':[113.21,35.24],
    '句容':[119.16,31.95],
    '北京':[116.46,39.92],
    '徐州':[117.2,34.26],
    '衡水':[115.72,37.72],
    '包头':[110,40.58],
    '绵阳':[104.73,31.48],
    '乌鲁木齐':[87.68,43.77],
    '枣庄':[117.57,34.86],
    '杭州':[120.19,30.26],
    '淄博':[118.05,36.78],
    '鞍山':[122.85,41.12],
    '溧阳':[119.48,31.43],
    '库尔勒':[86.06,41.68],
    '安阳':[114.35,36.1],
    '开封':[114.35,34.79],
    '济南':[117,36.65],
    '德阳':[104.37,31.13],
    '温州':[120.65,28.01],
    '九江':[115.97,29.71],
    '邯郸':[114.47,36.6],
    '临安':[119.72,30.23],
    '兰州':[103.73,36.03],
    '沧州':[116.83,38.33],
    '临沂':[118.35,35.05],
    '南充':[106.110698,30.837793],
    '天津':[117.2,39.13],
    '富阳':[119.95,30.07],
    '泰安':[117.13,36.18],
    '诸暨':[120.23,29.71],
    '郑州':[113.65,34.76],
    '哈尔滨':[126.63,45.75],
    '聊城':[115.97,36.45],
    '芜湖':[118.38,31.33],
    '唐山':[118.02,39.63],
    '平顶山':[113.29,33.75],
    '邢台':[114.48,37.05],
    '德州':[116.29,37.45],
    '济宁':[116.59,35.38],
    '荆州':[112.239741,30.335165],
    '宜昌':[111.3,30.7],
    '义乌':[120.06,29.32],
    '丽水':[119.92,28.45],
    '洛阳':[112.44,34.7],
    '秦皇岛':[119.57,39.95],
    '株洲':[113.16,27.83],
    '石家庄':[114.48,38.03],
    '莱芜':[117.67,36.19],
    '常德':[111.69,29.05],
    '保定':[115.48,38.85],
    '湘潭':[112.91,27.87],
    '金华':[119.64,29.12],
    '岳阳':[113.09,29.37],
    '长沙':[113,28.21],
    '衢州':[118.88,28.97],
    '廊坊':[116.7,39.53],
    '菏泽':[115.480656,35.23375],
    '合肥':[117.27,31.86],
    '武汉':[114.31,30.52],
    '大庆':[125.03,46.58]
};

export default geoCoordMap;

除了上述的城市坐标之外,我们还需要一份跟城市坐标相对应的权重数据,用来表示某个指标在各个城市的值,同样的是一份单独的js文件,源代码如下:

let dataValue = [
     {name: '海门', value: 9},
     {name: '鄂尔多斯', value: 12},
     {name: '招远', value: 12},
     {name: '舟山', value: 12},
     {name: '齐齐哈尔', value: 14},
     {name: '盐城', value: 15},
     {name: '赤峰', value: 16},
     {name: '青岛', value: 18},
     {name: '乳山', value: 18},
     {name: '金昌', value: 19},
     {name: '泉州', value: 21},
     {name: '莱西', value: 21},
     {name: '日照', value: 21},
     {name: '胶南', value: 22},
     {name: '南通', value: 23},
     {name: '拉萨', value: 24},
     {name: '云浮', value: 24},
     {name: '梅州', value: 25},
     {name: '文登', value: 25},
     {name: '上海', value: 25},
     {name: '攀枝花', value: 25},
     {name: '威海', value: 25},
     {name: '承德', value: 25},
     {name: '厦门', value: 26},
     {name: '汕尾', value: 26},
     {name: '潮州', value: 26},
     {name: '丹东', value: 27},
     {name: '太仓', value: 27},
     {name: '曲靖', value: 27},
     {name: '烟台', value: 28},
     {name: '福州', value: 29},
     {name: '瓦房店', value: 30},
     {name: '即墨', value: 30},
     {name: '抚顺', value: 31},
     {name: '玉溪', value: 31},
     {name: '张家口', value: 31},
     {name: '阳泉', value: 31},
     {name: '莱州', value: 32},
     {name: '湖州', value: 32},
     {name: '汕头', value: 32},
     {name: '昆山', value: 33},
     {name: '宁波', value: 33},
     {name: '湛江', value: 33},
     {name: '揭阳', value: 34},
     {name: '荣成', value: 34},
     {name: '连云港', value: 35},
     {name: '葫芦岛', value: 35},
     {name: '常熟', value: 36},
     {name: '东莞', value: 36},
     {name: '河源', value: 36},
     {name: '淮安', value: 36},
     {name: '泰州', value: 36},
     {name: '南宁', value: 37},
     {name: '营口', value: 37},
     {name: '惠州', value: 37},
     {name: '江阴', value: 37},
     {name: '蓬莱', value: 37},
     {name: '韶关', value: 38},
     {name: '嘉峪关', value: 38},
     {name: '广州', value: 38},
     {name: '延安', value: 38},
     {name: '太原', value: 39},
     {name: '清远', value: 39},
     {name: '中山', value: 39},
     {name: '昆明', value: 39},
     {name: '寿光', value: 40},
     {name: '盘锦', value: 40},
     {name: '长治', value: 41},
     {name: '深圳', value: 41},
     {name: '珠海', value: 42},
     {name: '宿迁', value: 43},
     {name: '咸阳', value: 43},
     {name: '铜川', value: 44},
     {name: '平度', value: 44},
     {name: '佛山', value: 44},
     {name: '海口', value: 44},
     {name: '江门', value: 45},
     {name: '章丘', value: 45},
     {name: '肇庆', value: 46},
     {name: '大连', value: 47},
     {name: '临汾', value: 47},
     {name: '吴江', value: 47},
     {name: '石嘴山', value: 49},
     {name: '沈阳', value: 50},
     {name: '苏州', value: 50},
     {name: '茂名', value: 50},
     {name: '嘉兴', value: 51},
     {name: '长春', value: 51},
     {name: '胶州', value: 52},
     {name: '银川', value: 52},
     {name: '张家港', value: 52},
     {name: '三门峡', value: 53},
     {name: '锦州', value: 54},
     {name: '南昌', value: 54},
     {name: '柳州', value: 54},
     {name: '三亚', value: 54},
     {name: '自贡', value: 56},
     {name: '吉林', value: 56},
     {name: '阳江', value: 57},
     {name: '泸州', value: 57},
     {name: '西宁', value: 57},
     {name: '宜宾', value: 58},
     {name: '呼和浩特', value: 58},
     {name: '成都', value: 58},
     {name: '大同', value: 58},
     {name: '镇江', value: 59},
     {name: '桂林', value: 59},
     {name: '张家界', value: 59},
     {name: '宜兴', value: 59},
     {name: '北海', value: 60},
     {name: '西安', value: 61},
     {name: '金坛', value: 62},
     {name: '东营', value: 62},
     {name: '牡丹江', value: 63},
     {name: '遵义', value: 63},
     {name: '绍兴', value: 63},
     {name: '扬州', value: 64},
     {name: '常州', value: 64},
     {name: '潍坊', value: 65},
     {name: '重庆', value: 66},
     {name: '台州', value: 67},
     {name: '南京', value: 67},
     {name: '滨州', value: 70},
     {name: '贵阳', value: 71},
     {name: '无锡', value: 71},
     {name: '本溪', value: 71},
     {name: '克拉玛依', value: 72},
     {name: '渭南', value: 72},
     {name: '马鞍山', value: 72},
     {name: '宝鸡', value: 72},
     {name: '焦作', value: 75},
     {name: '句容', value: 75},
     {name: '北京', value: 79},
     {name: '徐州', value: 79},
     {name: '衡水', value: 80},
     {name: '包头', value: 80},
     {name: '绵阳', value: 80},
     {name: '乌鲁木齐', value: 84},
     {name: '枣庄', value: 84},
     {name: '杭州', value: 84},
     {name: '淄博', value: 85},
     {name: '鞍山', value: 86},
     {name: '溧阳', value: 86},
     {name: '库尔勒', value: 86},
     {name: '安阳', value: 90},
     {name: '开封', value: 90},
     {name: '济南', value: 92},
     {name: '德阳', value: 93},
     {name: '温州', value: 95},
     {name: '九江', value: 96},
     {name: '邯郸', value: 98},
     {name: '临安', value: 99},
     {name: '兰州', value: 99},
     {name: '沧州', value: 100},
     {name: '临沂', value: 103},
     {name: '南充', value: 104},
     {name: '天津', value: 105},
     {name: '富阳', value: 106},
     {name: '泰安', value: 112},
     {name: '诸暨', value: 112},
     {name: '郑州', value: 113},
     {name: '哈尔滨', value: 114},
     {name: '聊城', value: 116},
     {name: '芜湖', value: 117},
     {name: '唐山', value: 119},
     {name: '平顶山', value: 119},
     {name: '邢台', value: 119},
     {name: '德州', value: 120},
     {name: '济宁', value: 120},
     {name: '荆州', value: 127},
     {name: '宜昌', value: 130},
     {name: '义乌', value: 132},
     {name: '丽水', value: 133},
     {name: '洛阳', value: 134},
     {name: '秦皇岛', value: 136},
     {name: '株洲', value: 143},
     {name: '石家庄', value: 147},
     {name: '莱芜', value: 148},
     {name: '常德', value: 152},
     {name: '保定', value: 153},
     {name: '湘潭', value: 154},
     {name: '金华', value: 157},
     {name: '岳阳', value: 169},
     {name: '长沙', value: 175},
     {name: '衢州', value: 177},
     {name: '廊坊', value: 193},
     {name: '菏泽', value: 194},
     {name: '合肥', value: 229},
     {name: '武汉', value: 273},
     {name: '大庆', value: 279}
];

export default dataValue;

3、完成了以上操作之后,我们接下来就要进行散点图的配置信息初始化,在此处其实就是实例化series这个属性,代码如下:

    //初始化图表参数
    _initCharts=() => {
        const _self = this;
        _self.state.series = [
            {
                name: 'pm2.5',
                type: 'scatter',
                coordinateSystem: 'arcgis',
                data: _self._convertData(dataValue),
                symbolSize: function (val) {
                    return val[2] / 10;
                },
                label: {
                    formatter: '{b}',
                    position: 'right',
                    show: false
                },
                itemStyle: {
                    color: '#00FFFF'
                },
                emphasis: {
                    label: {
                        show: true
                    }
                }
            },
            {
                name: 'Top 5',
                type: 'effectScatter',
                coordinateSystem: 'arcgis',
                data: _self._convertData(dataValue.sort(function (a, b) {
                    return b.value - a.value;
                }).slice(0, 6)),
                symbolSize: function (val) {
                    return val[2] / 10;
                },
                showEffectOn: 'render',
                rippleEffect: {
                    brushType: 'stroke'
                },
                hoverAnimation: true,
                label: {
                    formatter: '{b}',
                    position: 'right',
                    show: true
                },
                itemStyle: {
                    color: '#00FFFF',
                    shadowBlur: 10,
                    shadowColor: '#333'
                },
                zlevel: 1
            }
        ];
    }

上述代码中用到了数据转换这个方法,代码如下:

    _convertData=(data) => {
        let res = [];
        for (let i = 0; i < data.length; i++) {
            let geoCoord = geoCoordMap[data[i].name];
            if (geoCoord) {
                res.push({
                    name: data[i].name,
                    value: geoCoord.concat(data[i].value)
                });
            }
        }
        return res;
    }

4、图表信息初始化之后,接下来监听地图的绘制完成事件,然后调用绘制图表函数来进行图表的绘制,代码如下:

view.when(function() {
	_self.state.mapview = view;
	_self._drawCharts();
});
    //绘制图表
    _drawCharts=() => {
        const _self = this;
        const options = {
            url: 'https://js.arcgis.com/4.14/dojo/dojo.js',
        };

        loadModules([
            'http://localhost/test/EchartsLayer.min.js'
        ], options).then(([
            echartsLayer
        ]) => {
            console.log(_self.state.mapview)
            //_self.state.mapview.when(function(){
                let chart = new echartsLayer(_self.state.mapview);
                let option = {
                    title: {
                        text: 'ArcGIS API for Javascript4.14扩展Echarts4之散点图',
                        subtext: 'Develop By X北辰北',
                        left: 'center',
                        textStyle: {
                            color: '#fff'
                        }
                    },
                    series: _self.state.series
                };
                chart.setChartOption(option);
            //});
        }
        ).catch((err) => {
            console.log('图表绘制失败,' + err);
        });
    }

5、通过以上操作过程就实现了散点图的绘制,如果需要绘制三维场景下的散点图,只需要将mapview更改为sceneview即可。

 

总结

本文在上一篇文章的基础之上跟大家介绍了一下使用ArcGIS JS API和eCharts来绘制二维和三维场景下的散点图的过程,为了便于代码组织,这篇文章中的代码是在src目录下新建了一个scatterDiagram的组件,如果大家觉得麻烦,可将此组件中的代码直接拷贝到App.js文件里进行学习和参考,中间没有任何问题。

 

附:

散点图绘制全部源码:

import React,{Component} from 'react';
import {loadModules} from 'esri-loader';
import './scatterDiagram.css';

import dataValue from './data/dataValue';
import geoCoordMap from './data/geoCoordMap';

class ScatterDiagram extends Component {

    state = {
        series: null,
        mapview: null,
    }

    componentDidMount=() => {
        this._initMapView();
        this._initCharts();
    }

    //实例化地图
    _initMapView=() => {
        const _self = this;
        const options = {
            url: 'https://js.arcgis.com/4.14/',
            css: 'https://js.arcgis.com/4.14/esri/themes/light/main.css'
        };

        loadModules(['esri/Map',
            'esri/Basemap',
            'esri/layers/TileLayer',
            'esri/views/MapView',
            'esri/views/SceneView',
        ], options).then(([
            Map, 
            Basemap,
            TileLayer,
            MapView,
            SceneView,
        ]) => {
                    let basemap = new Basemap({
                        baseLayers: [
                            new TileLayer({
                                url: "http://map.geoq.cn/arcgis/rest/services/ChinaOnlineStreetPurplishBlue/MapServer",
                                title: "Basemap"
                            })
                        ],
                        title: "basemap",
                        id: "basemap"
                    });
                    let map = new Map({
                        basemap: basemap
                    });
                    let view = new MapView({
                        container: "mapview", 
                        map: map, 
                        zoom: 5, 
                        center: [107.246152,34.414465] 
                    });
                    // let view = new SceneView({
                    //     container: "mapview", 
                    //     map: map, 
                    //     scale: 50000000, 
                    //     center: [107.246152,34.414465] 
                    // });
                    
                    view.when(function() {
                        _self.state.mapview = view;
                        _self._drawCharts();
                    });
            }
        ).catch((err) => {
            console.log('底图创建失败,' + err);
        });
    }

    //初始化图表参数
    _initCharts=() => {
        const _self = this;
        _self.state.series = [
            {
                name: 'pm2.5',
                type: 'scatter',
                coordinateSystem: 'arcgis',
                data: _self._convertData(dataValue),
                symbolSize: function (val) {
                    return val[2] / 10;
                },
                label: {
                    formatter: '{b}',
                    position: 'right',
                    show: false
                },
                itemStyle: {
                    color: '#00FFFF'
                },
                emphasis: {
                    label: {
                        show: true
                    }
                }
            },
            {
                name: 'Top 5',
                type: 'effectScatter',
                coordinateSystem: 'arcgis',
                data: _self._convertData(dataValue.sort(function (a, b) {
                    return b.value - a.value;
                }).slice(0, 6)),
                symbolSize: function (val) {
                    return val[2] / 10;
                },
                showEffectOn: 'render',
                rippleEffect: {
                    brushType: 'stroke'
                },
                hoverAnimation: true,
                label: {
                    formatter: '{b}',
                    position: 'right',
                    show: true
                },
                itemStyle: {
                    color: '#00FFFF',
                    shadowBlur: 10,
                    shadowColor: '#333'
                },
                zlevel: 1
            }
        ];
    }

    _convertData=(data) => {
        let res = [];
        for (let i = 0; i < data.length; i++) {
            let geoCoord = geoCoordMap[data[i].name];
            if (geoCoord) {
                res.push({
                    name: data[i].name,
                    value: geoCoord.concat(data[i].value)
                });
            }
        }
        return res;
    }

    //绘制图表
    _drawCharts=() => {
        const _self = this;
        const options = {
            url: 'https://js.arcgis.com/4.14/dojo/dojo.js',
        };

        loadModules([
            'http://localhost/test/EchartsLayer.min.js'
        ], options).then(([
            echartsLayer
        ]) => {
            console.log(_self.state.mapview)
            //_self.state.mapview.when(function(){
                let chart = new echartsLayer(_self.state.mapview);
                let option = {
                    title: {
                        text: 'ArcGIS API for Javascript4.14扩展Echarts4之散点图',
                        subtext: 'Develop By X北辰北',
                        left: 'center',
                        textStyle: {
                            color: '#fff'
                        }
                    },
                    series: _self.state.series
                };
                chart.setChartOption(option);
            //});
        }
        ).catch((err) => {
            console.log('图表绘制失败,' + err);
        });
    }

    render() {
        return (
            <div id="mapview"></div>
        )
    }
}

export default  ScatterDiagram;

EchartsLayer.min.js源码:

var _0x4564=['prototype','setMapOffset','dataToPoint','point','toScreen','pointToData','toMap','getViewRect','BoundingRect','getRoamTransform','dojo/_base/declare','dojo/_base/lang','esri/geometry/Point','esri/geometry/SpatialReference','EchartsglLayer','registerCoordinateSystem','arcgis','getE3CoordinateSystem','init','setBaseMap','createLayer','view','chartOption','setCharts','box','visible','hidden','chart','off','undefined','extent','xAxis','xmin','xmax','yAxis','ymin','ymax','setOption','animation','createElement','div','setAttribute','echartsData','name','style','width','height','position','absolute','top','left','getElementsByClassName','esri-view-surface','appendChild','startMapEventListeners','outerHTML','originLyr','features','screenData','map_DragStart_Listener','remove','map_DragEnd_Listener','map_ZoomStart_Listener','map_ZoomEnd_Listener','map_ExtentChange_Listener','watch','hitch','resize','rotation','map','_mapOffset','create','eachSeries','get','coordinateSystem','getDimensionsInfo','dimensions'];(function(_0x4ea369,_0x173297){var _0x432a1a=function(_0x3b4d7a){while(--_0x3b4d7a){_0x4ea369['push'](_0x4ea369['shift']());}};_0x432a1a(++_0x173297);}(_0x4564,0xf1));var _0x1824=function(_0x20e690,_0x5f0396){_0x20e690=_0x20e690-0x0;var _0x841fe2=_0x4564[_0x20e690];return _0x841fe2;};define([_0x1824('0x0'),_0x1824('0x1'),_0x1824('0x2'),_0x1824('0x3')],function(_0x4156fb,_0x59c3eb,_0x275378,_0x4d54b1){return _0x4156fb(_0x1824('0x4'),null,{'name':_0x1824('0x4'),'view':null,'box':null,'chart':null,'chartOption':null,'visible':!![],'constructor':function(_0x27b7d3,_0x649a95){echarts[_0x1824('0x5')](_0x1824('0x6'),this[_0x1824('0x7')](_0x27b7d3));this[_0x1824('0x8')](_0x27b7d3,_0x649a95);},'init':function(_0x3a80a9,_0x5617d3){this[_0x1824('0x9')](_0x3a80a9);this[_0x1824('0xa')]();},'setBaseMap':function(_0x3ddf37){this[_0x1824('0xb')]=_0x3ddf37;},'setChartOption':function(_0x497153){this[_0x1824('0xc')]=_0x497153;this[_0x1824('0xd')]();},'setVisible':function(_0x36aa18){if(!this[_0x1824('0xe')]||this[_0x1824('0xf')]===_0x36aa18)return;this[_0x1824('0xe')][_0x1824('0x10')]=!_0x36aa18;this[_0x1824('0xf')]=_0x36aa18;_0x36aa18===!![]&&setCharts();},'refreshBegin':function(){this[_0x1824('0xe')][_0x1824('0x10')]=!![];},'refreshing':function(){setCharts();},'refreshEnd':function(){this[_0x1824('0xe')][_0x1824('0x10')]=![];},'on':function(_0x5dd691,_0x472109,_0x4b90b9){this[_0x1824('0x11')]['on'](_0x5dd691,_0x472109,_0x4b90b9);},'off':function(_0x25e82f,_0x44fdf2,_0x3cd39d){this[_0x1824('0x11')][_0x1824('0x12')](_0x25e82f,_0x44fdf2,_0x3cd39d);},'map_DragStart_Listener':null,'map_DragEnd_Listener':null,'map_ZoomStart_Listener':null,'map_ZoomEnd_Listener':null,'map_ExtentChange_Listener':null,'map_click_Listener':null,'setCharts':function(){if(!this[_0x1824('0xf')])return;if(this[_0x1824('0xc')]==null||this[_0x1824('0xc')]==_0x1824('0x13'))return;let _0x50f53f=this[_0x1824('0xb')][_0x1824('0x14')];this[_0x1824('0xc')][_0x1824('0x15')]={'show':![],'min':_0x50f53f[_0x1824('0x16')],'max':_0x50f53f[_0x1824('0x17')]};this[_0x1824('0xc')][_0x1824('0x18')]={'show':![],'min':_0x50f53f[_0x1824('0x19')],'max':_0x50f53f[_0x1824('0x1a')]};this[_0x1824('0x11')][_0x1824('0x1b')](this[_0x1824('0xc')]);this[_0x1824('0xc')][_0x1824('0x1c')]=![];},'createLayer':function(){let _0x56973d=this[_0x1824('0xe')]=document[_0x1824('0x1d')](_0x1824('0x1e'));_0x56973d[_0x1824('0x1f')]('id',_0x1824('0x20'));_0x56973d[_0x1824('0x1f')](_0x1824('0x21'),_0x1824('0x20'));_0x56973d[_0x1824('0x22')][_0x1824('0x23')]=this[_0x1824('0xb')][_0x1824('0x23')]+'px';_0x56973d[_0x1824('0x22')][_0x1824('0x24')]=this[_0x1824('0xb')][_0x1824('0x24')]+'px';_0x56973d[_0x1824('0x22')][_0x1824('0x25')]=_0x1824('0x26');_0x56973d[_0x1824('0x22')][_0x1824('0x27')]=0x0;_0x56973d[_0x1824('0x22')][_0x1824('0x28')]=0x0;let _0x22f992=document[_0x1824('0x29')](_0x1824('0x2a'))[0x0];_0x22f992[_0x1824('0x2b')](_0x56973d);this[_0x1824('0x11')]=echarts[_0x1824('0x8')](_0x56973d);this[_0x1824('0x2c')]();},'removeLayer':function(){this[_0x1824('0xe')][_0x1824('0x2d')]='';this[_0x1824('0xb')]=null;this[_0x1824('0xe')]=null;this[_0x1824('0x2e')]=null;this[_0x1824('0x2f')]=null;this[_0x1824('0x30')]=[];this[_0x1824('0x11')]=null;this[_0x1824('0xc')]=null;this[_0x1824('0x31')][_0x1824('0x32')]();this[_0x1824('0x33')][_0x1824('0x32')]();this[_0x1824('0x34')][_0x1824('0x32')]();this[_0x1824('0x35')][_0x1824('0x32')]();this[_0x1824('0x36')][_0x1824('0x32')]();},'startMapEventListeners':function(){let _0x576d14=this[_0x1824('0xb')];_0x576d14[_0x1824('0x37')](_0x1824('0x14'),_0x59c3eb[_0x1824('0x38')](this,function(){if(!this[_0x1824('0xf')])return;this[_0x1824('0xd')]();this[_0x1824('0x11')][_0x1824('0x39')]();this[_0x1824('0xe')][_0x1824('0x10')]=![];}));_0x576d14[_0x1824('0x37')](_0x1824('0x3a'),_0x59c3eb[_0x1824('0x38')](this,function(){if(!this[_0x1824('0xf')])return;this[_0x1824('0xd')]();this[_0x1824('0x11')][_0x1824('0x39')]();this[_0x1824('0xe')][_0x1824('0x10')]=![];}));},'getE3CoordinateSystem':function(_0x56f41a){var _0x4504c9=function _0x4504c9(_0x180267){this[_0x1824('0x3b')]=_0x180267;this[_0x1824('0x3c')]=[0x0,0x0];};_0x4504c9[_0x1824('0x3d')]=function(_0x1a4547){_0x1a4547[_0x1824('0x3e')](function(_0x17e9bb){if(_0x17e9bb[_0x1824('0x3f')](_0x1824('0x40'))===_0x1824('0x6')){_0x17e9bb[_0x1824('0x40')]=new _0x4504c9(_0x56f41a);}});};_0x4504c9[_0x1824('0x41')]=function(){return['x','y'];};_0x4504c9[_0x1824('0x42')]=['x','y'];_0x4504c9[_0x1824('0x43')][_0x1824('0x42')]=['x','y'];_0x4504c9[_0x1824('0x43')][_0x1824('0x44')]=function setMapOffset(_0xeffdb8){this[_0x1824('0x3c')]=_0xeffdb8;};_0x4504c9[_0x1824('0x43')][_0x1824('0x45')]=function dataToPoint(_0x209327){var _0x2755d4={'type':_0x1824('0x46'),'x':_0x209327[0x0],'y':_0x209327[0x1],'spatialReference':new _0x4d54b1(0x10e6)};var _0x3676a6=_0x56f41a[_0x1824('0x47')](_0x2755d4);var _0x52b765=this[_0x1824('0x3c')];return[_0x3676a6['x']-_0x52b765[0x0],_0x3676a6['y']-_0x52b765[0x1]];};_0x4504c9[_0x1824('0x43')][_0x1824('0x48')]=function pointToData(_0x5d9368){var _0x4282c5=this[_0x1824('0x3c')];var _0x3a367d={'x':_0x5d9368[0x0]+_0x4282c5[0x0],'y':_0x5d9368[0x1]+_0x4282c5[0x1]};var _0x3a9399=_0x56f41a[_0x1824('0x49')](_0x3a367d);return[_0x3a9399['x'],_0x3a9399['y']];};_0x4504c9[_0x1824('0x43')][_0x1824('0x4a')]=function getViewRect(){return new graphic[(_0x1824('0x4b'))](0x0,0x0,this[_0x1824('0x3b')][_0x1824('0x23')],this[_0x1824('0x3b')][_0x1824('0x24')]);};_0x4504c9[_0x1824('0x43')][_0x1824('0x4c')]=function getRoamTransform(){return matrix[_0x1824('0x3d')]();};return _0x4504c9;}});});

 

  • 7
    点赞
  • 11
    评论
  • 7
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值