Java基础随笔——进制转换

功能为任意进制数与10进制相互转换

最近发现很多经常有各种进制转换的题,遂写了个万能版本,以10进制为媒介,实现的相互转换(方便以后偷懒),有改进的地方或者更好的方法欢迎交流

import java.util.Stack;

public class NumerationCalculate {
	private static int inputNumeration = 16;//设置计数制
	private final static char[] l = {'a','b','c','d','e','f','g','h','i','j',
			'k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'};
	public static void setNum(int num) {
		inputNumeration = num;
	}
	public static int toDec(String m) {
		int flag = 1;
		char[] s = m.toCharArray();
		int dec=0;
		try {
			for(int i=s.length-1;i>=0;i--){
				int x = 48;
				if(s[i]>=48&&s[i]<=57) {
					x = 48;
				}
				else if(s[i]>=65&&s[i]<=54+inputNumeration){
					x = 55;
				}
				else if(s[i]>=97&&s[i]<=86+inputNumeration) {
					x = 87;
				}
				else {
					flag = 0;
					throw new Exception("输入数字进制有误!程序终止!");
				}
				dec+=(s[i]-x)*(Math.pow(inputNumeration, s.length-i-1));
			}
		}catch(Exception e) {
			System.out.println(e);
		}
		finally {
			if(flag==0)
				System.exit(0);
		}
		return dec;
	}
	public static String toTarget(int dec) {
		String tar="";
		Stack<Integer> s = new Stack<Integer>();
		while(dec>=inputNumeration) {
			s.push(dec%inputNumeration);
			dec/=inputNumeration;
		}
		s.push(dec);
		while(s.size()>0) {
			String t = s.peek()<=9?(s.peek()+""):(l[s.peek()-10]+"");
			tar+=t;
			s.pop();
		}
		return tar;
	}
}

是些很基础的东西。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值