解法
这道题一看题目就大概知道是一道树状dp,我们就要想转移方程式是个什么样子了。
首先我们很好能想出来要从下往上不断转移状态,所以我们要先预处理出来 d p [ i ] [ i ] = a [ i ] dp[i][i]=a[i] dp[i][i]=a[i],然后不断转移。
然后转移方程该怎么想呢?方程很明显就是看看怎么分答案最大就好了,但是要注意一点要记录你怎么分的,最后输出一下就好了。
动态转移方程
:dp[i][j]=max(dp[i][k-1]*dp[k+1][j]+a[k])
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[90];
int ans[90][90];
int dp[90][90];
void erfen(int l,int r)
{
if(l>r)return;
if(l==r)
{
printf("%d ",l);return;
}
printf("%d ",ans[l][r]);
erfen(l,ans[l][r]-1);
erfen(ans[l][r]+1,r);
}
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),dp[i][i]=a[i],dp[i][i-1]=1;
for(int i=n;i;i--)
for(int j=i+1;j<=n;j++)
for(int k=i;k<=j;k++)
if(dp[i][j]<dp[i][k-1]*dp[k+1][j]+a[k])
{
dp[i][j]=dp[i][k-1]*dp[k+1][j]+a[k];
ans[i][j]=k;
}
printf("%d\n",dp[1][n]);
erfen(1,n);
return 0;
}