FFT+NTT自学笔记(大数乘积模板)

FTT学习笔记:

学习步骤

1.回顾一下复数的指数表示形式:

常规表示:
z=a+ib z = a + i b ;
指数表示:
z=reiθ z = r e i θ ;
其中,r为z的模,θ为辐角主值。
z=r(cosθ+isinθ)=reiθ z = r ( c o s θ + i s i n θ ) = r e i θ ,欧拉公式

2.快速傅里叶变换要解决的问题:

计算多项式乘积( nlogn n l o g n
两个概念:1)离散傅里叶正变换:将多项式的系数形式转换成点值达式(复杂度( O(nlogn O ( n l o g n ))
2)离散傅里叶反变换:将点值形式还原成多项式的系数形式(复杂度( O(nlogn O ( n l o g n ))

3.单位复根

在一个单位圆中,将单位圆划分成n等分没个偏角度数为 θ=2πn θ = 2 ∗ π n ,则 eiθ e i θ 即为n次单位向量,记作 W1n W n 1 。其余的单位向量为: W2nW3n...Wn1n W n 2 , W n 3 , . . . , W n n − 1
性质一: (Wkn)n=1 ( W n k ) n = 1 ,证明: e2πnikn e 2 ∗ π n i ∗ k n = e2πki e 2 π ∗ k i =1
性质二: (W2k2n) ( W 2 n 2 k ) = (Wkn) ( W n k ) ,证明: e2π2ni2k e 2 ∗ π 2 n i ∗ 2 k = e2πnik e 2 ∗ π n i ∗ k (折半定理)
性质三: (Wk+n2n) ( W n k + n 2 ) = (Wkn) − ( W n k ) ,证明: e2πni(k+n2) e 2 ∗ π n i ∗ ( k + n 2 ) = eπkie2πnik e π ∗ k ∗ i ∗ e 2 ∗ π n i ∗ k = e2πnik − e 2 ∗ π n i ∗ k = (Wkn) − ( W n k ) (消去引理)

4.正反变换过程证明

参考大神证明

主要注意:反变换只需将 π π 取反,重复一遍正变换过程,然后得到的多项式系数除以n即可

蝴蝶操作证明:
这里写图片描述

贴一个简洁模板:

快速傅里叶变换大数乘积简洁模板
poj2389
大数乘法模板:

#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<complex>
using namespace std;
#define cd complex<double>
const int maxn=2000000;//用于存放2^k个数,尽量放大
const double pi=acos(-1);
cd a[maxn],b[maxn];
int rev[maxn];

void getrev(int bit)//递推求二进制倒序后的数
{
    int len=(1<<bit);
    for(int i=0;i<len;i++)
    {
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
    }
}
void fft(cd *a,int n,int dft)
{
    //通过找规律,得到递归的最下层数的序列,然后由数组记录最下层的序列后
    //通过数组模拟往上递归过程;
    for(int i=0;i<n;i++)
    {
        if(i<rev[i])
        {
            swap(a[i],a[rev[i]]);
        }
    }
    for(int step=1;step<n;step<<=1)
    {
        cd wn=exp(cd(0,dft*pi/step));//计算本轮操作的单位复根
        for(int j=0;j<n;j+=step<<1)
        {
            cd wnk(1,0);
            for(int k=j;k<j+step;k++)
            {
                cd x=a[k],y=wnk*a[k+step];
                a[k]=x+y;//根据折半引理可得
                a[k+step]=x-y;//根据消去引理可得
                wnk*=wn;
            }
        }
    }
    if(dft==-1)//如果是逆变换
    {
        for(int i=0;i<n;i++)
        {
            a[i]/=n;
        }
    }
}
char s1[maxn],s2[maxn];
int ans[maxn];
int main()
{
    while(scanf("%s%s",s1,s2)!=EOF)
    {
        int lens1=strlen(s1);
        for(int i=0;i<lens1;i++)
        {
            a[i]=s1[lens1-i-1]-'0';
        }
        int lens2=strlen(s2);
        for(int i=0;i<lens2;i++)
        {
            b[i]=s2[lens2-i-1]-'0';
        }
        int bit=1,s=2;
        for(;(1<<bit)<lens1+lens2-1;bit++)s<<=1;
        getrev(bit);fft(a,s,1);fft(b,s,1);
        for(int i=0;i<s;i++)a[i]*=b[i];
        fft(a,s,-1);
        for(int i=0;i<s;i++)
        {
            ans[i]+=(int)(a[i].real()+0.5);
            ans[i+1]+=ans[i]/10;
            ans[i]%=10;
        }
        int i;
        for(i=lens1+lens2;!ans[i]&&i>=0;i--);
        if(i==-1)printf("0");
        for(;i>=0;i--)
        {
            printf("%d",ans[i]);
        }
        printf("\n");
    }
    return 0;
}

NTT学习笔记

1.了解原根

原根:如果g是p的原根,则有 gi g i mod p ≠ gj g j mod p;(i≠j && 1≤i≤p-
1 && 1≤j≤p-1)
如果p是素数,设 gn g n = gp1n g p − 1 n ,则有一下结论:
性质一: gnn=gn2n g n n = − g n n 2

gnn=gp1nnn=gp1n=1 g n n = g n p − 1 n ∗ n = g n p − 1 = 1

gp12n=1 g n p − 1 2 = 1

由原根的定义可知当 p1 p − 1 p12 p − 1 2 gp12n g n p − 1 2 ≠ 1,则 gp12n g n p − 1 2 =-1;性质一得证
性质二: g2kn=gkn2 g n 2 k = g n 2 k
g2kn=gp1n2kn g n 2 k = g n p − 1 n ∗ 2 k

gkn2=gp1n2kn2 g n 2 k = g n 2 p − 1 n ∗ 2 k

得证;(以上所有结论都要模p)

以上两个性质正好和fft的单位复根作为插值是完全一样的,因此可以用原根模数作为插值,正反变换过程不变,但是未用到浮点数,因此精度提高。

2.关于n的选值问题

在fft中,取大于等于n的2的幂作物最终的n
在ntt中,通常选 a2k+1 a ∗ 2 k + 1 的素数
通常选则

p=1004535809=479221+1 p = 1004535809 = 479 ∗ 2 21 + 1

因为它的最小正原根是3
UOJ 模数 998244353=223×7×17+1 998244353 = 2 23 × 7 × 17 + 1 ,最小正原根也是 3
快速数论变换大数乘积简洁模板

poj2389

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int mod=479*(1<<21)+1;
const int maxn=2000000;
int rev[maxn];
ll a[maxn],b[maxn];
ll qm(ll a,ll b)
{
    if(b<0)
    {
        b=-b;
        a=qm(a,mod-2);
    }
    a=a%mod;
    ll ans=1;
    while(b)
    {
        if(b&1)
        {
            ans=ans*a%mod;
        }
        b>>=1;
        a=a*a%mod;
    }
    return ans;
}

void getrev(int bit)
{
    for(int i=0; i<(1<<bit); i++)
    {
        rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
    }
}
void ntt(ll *a,int n,int dft)
{
    for(int i=0; i<n; i++)
    {
        if(i<rev[i])
        {
            swap(a[i],a[rev[i]]);
        }
    }
    for(int step=1; step<n; step<<=1)
    {
        ll wn;
        wn=qm(3,dft*(mod-1)/(step*2));//3^((p-1)/n)
        for(int j=0; j<n; j+=step<<1)
        {
            ll wnk=1;
            for(int k=j; k<j+step; k++)
            {
                //通通注意mod
                ll x=a[k]%mod;
                ll y=(wnk*a[step+k])%mod;
                a[k]=(x+y)%mod;
                a[k+step]=((x-y)%mod+mod)%mod;
                wnk=(wnk*wn)%mod;
            }
        }
    }
    if(dft==-1)
    {
        int ni=qm(n,mod-2);
        for(int i=0; i<n; i++)
        {
            a[i]=a[i]*ni%mod;//注意mod
        }
    }
}
char s1[maxn],s2[maxn];
int ans[maxn];
int main()
{
    scanf("%s%s",s1,s2);
    int lens1=strlen(s1),lens2=strlen(s2);
    int bit=1,s=2;
    for(; (1<<bit)<(lens1+lens2-1); bit++)
        s<<=1;

    getrev(bit);

    for(int i=0; i<lens1; i++)
    {
        a[i]=s1[lens1-i-1]-'0';
    }
    for(int j=0; j<lens2; j++)
    {
        b[j]=s2[lens2-j-1]-'0';
    }
    ntt(a,s,1);
    ntt(b,s,1);
    for(int i=0; i<s; i++)
        a[i]=(a[i]*b[i])%mod;
    ntt(a,s,-1);
    for(int i=0; i<s; i++)
    {
        ans[i]+=a[i];
        ans[i+1]+=ans[i]/10;
        ans[i]%=10;
    }
    int i;
    for(i=s; !ans[i]&&i>=0; i--);
    if(i==-1)
        printf("0\n");
    for(; i>=0; i--)
    {
        printf("%d",ans[i]);
    }
    printf("\n");

    return 0;
}
/*123423
34564356546*/
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值