自然语言处理
我最怜君中宵舞
这个作者很懒,什么都没留下…
展开
-
tensorflow2.0 tf.keras API踩坑实录(缓更)
回调函数问题1 使用Tensorboard时出现ProfilerNotRunningError解决方法:将原始的存储路径改为os.path.join的形式log_dir = './tensorboard'# 改为如下形式log_dir = os.path.join('tensorboard')...原创 2019-12-12 14:42:12 · 333 阅读 · 0 评论 -
PyTroch网络构建参数与输出速查
只会列出常见方法和常用参数一 基础类ModuleModule是所有模型的父类,因此以下方法中都是各个模型的通用方法apply(fn)输入fn:函数输出inpalce方法,会对自己的每一层机械能fn中的操作children()输出会输出一个迭代器,包含所有的子Module(只返回最外层)与此对应的方法是named_children(...原创 2019-12-10 19:04:12 · 260 阅读 · 0 评论 -
Word2Vec之外的词向量训练方法(fastText,Glove)
word2vec外其他的词嵌入方法**fastText在Word2Vec训练词向量时忽略了英文单词单复数以及时态的变化。“dog”和“dogs”表示不同的单词但是具有相同的词根。我们在背单词的时候也会注意到,具有相同词根的单词在词义上会比较接近。而在Word2Vec的训练中,我们忽略了这些,将不同单词的单复数以及时态当作了不同的单词进行处理。基于Word2Vec存在的以上问题,fastTex...原创 2019-12-10 12:10:51 · 564 阅读 · 0 评论 -
快速理解NLP中的Attention机制
为什么需要attention机制常规的机器翻译遵循encoder-decoder机制,其中两个模块的目的是:encoder:将输入序列x1x2x3x4....xtx_1x_2x_3x_4....x_tx1x2x3x4....xt转换为矩阵或者向量表示C=f(x1,x2,x3....,xt)C=f(x_1,x_2,x_3....,x_t)C=f(x1,x2,x3....,xt...原创 2019-09-25 19:03:49 · 486 阅读 · 0 评论 -
简单理解Transformer结构
Transformer结构是谷歌于2018年提出用于nlp的深度学习模型结构,同时成为了之后bert的基础,那么transformer到底是什么样子的,它的提出解决了什么问题,带来了什么变化,我们在下面详细解释。Encoder-decoder结构机器翻译遵循的模型一般是encoder-decoder结构,结构图如下所示encoder是编码器,通常是RNN结构或者CNN结构(Image C...原创 2019-09-27 16:08:24 · 1495 阅读 · 0 评论 -
Transformer的矩阵维度分析和Mask详解
文章目录Multi-Head attention中矩阵维度的变化Transfromer的训练过程Transformer的句子生成过程Maskmask矩阵对K进行mask对Q进行maskMasked Multi-Head Attention中的Maskmask时Transformer中很重要的一个概念,mask操作的目的有两个:让padding(不够长补0)的部分不参与attention操作...原创 2019-09-29 11:05:26 · 37630 阅读 · 40 评论