给定一个字符串 s
,找到 s
中最长的回文子串。
譬如:输入babad,输出bab或者aba。
方法一:暴力法
两层for循环给出所有可能的子串,并判断是否为回文串,边循环边记录最长串。时间复杂度为O(n^3)
代码:
public class LongestPalindromicSubstring {
public String longestPalindrome(String s) {
int maxLength = 0;
String longestPalidromicString = "";
for(int i = 0;i<s.length();i++) {
for(int j = i;j<s.length()+1;j++) {
if(isPalidrome(s.substring(i, j))) {
int tmp = s.substring(i,j).length();
if(maxLength<tmp) {
maxLength = tmp;
longestPalidromicString = s.substring(i,j);
}
}
}
}
return longestPalidromicString;
}
private boolean isPalidrome(String string) {
int i = 0,j = string.length()-1;
while (i<j) {
if(string.charAt(i++) != string.charAt(j--))
return false;
}
return true;
}
public static void main(String[] args) {
LongestPalindromicSubstring lps = new LongestPalindromicSubstring();
System.out.println(lps.longestPalindrome("babad"));
}
}
方法二:中心扩展法
以babad为例,观察回文串可以发现,所有的回文串都是以中心点两遍对称的。对于n长度的串,可能的中心点有2*n-1个(因为偶数长度的回文中心点在中间两个字符之间)。这样只需要根据这2*n-1个点进行遍历即可。时间复杂度为O(n^2)
代码:
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0; //当前最长回文串的开始结束位置
for (int i = 0; i < s.length(); i++) {
//子串为奇数的情况
int len1 = expandAroundCenter(s, i, i);
//子串为偶数的情况
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
//回文子串是以i为中心的,由此求出start和end
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}