文章目录
242.有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。
示例1:
输入: s = "anagram", t = "nagaram"
输出: true
示例2:
输入: s = "rat", t = "car"
输出: false
提示:
1 <= s.length, t.length <= 5 * 104
s
和t
仅包含小写字母
进阶: 如果输入字符串包含 unicode
字符怎么办?你能否调整你的解法来应对这种情况?
c++ 代码实现
class Solution {
public:
bool isAnagram(string s, string t) {
// 是否相同
if (s.length() != t.length()){
return false;
}
// 26个字母
vector<int> table(26, 0);
for (auto & c: s){
table[c - 'a']++;
}
for (auto & ch: t) {
table[ch - 'a']--;
if (table[ch - 'a'] < 0){
return false;
}
}
return true;
}
};
python 代码实现
class Solution:
def isAnagram(self, s: str, t: str) -> bool:
if (len(s) != len(t)):
return False
for c in t:
s = s.replace(c, "", 1)
if s != "":
return False
return True
349.两个数组的交集
题目:
给定两个数组 nums1
和 nums2
,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。
示例 1:
输入:nums1 = [1,2,2,1], nums2 = [2,2]
输出:[2]
示例 2:
输入:nums1 = [4,9,5], nums2 = [9,4,9,8,4]
输出:[9,4]
解释:[4,9] 也是可通过的
提示:
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 1000
c++代码实现
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
// 排序加双指针
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
vector<int> inter;
int index1 = 0;
int index2 = 0;
while (index1 < nums1.size() && index2 < nums2.size()) {
if (nums1[index1] == nums2[index2]) {
if (!inter.size() || nums1[index1] != inter.back()) {
inter.push_back(nums1[index1]);
}
index1++;
index2++;
}
else if (nums1[index1] > nums2[index2]) {
index2++;
}else{
index1++;
}
}
return inter;
}
};
python 代码实现
class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
nums1.sort()
nums2.sort()
index1 = 0
index2 = 0
size1 = len(nums1)
size2 = len(nums2)
inter = []
while index1 < size1 and index2 < size2:
n1 = nums1[index1]
n2 = nums2[index2]
if n1 == n2:
if not inter or n1 != inter[-1]:
inter.append(n1)
index1 += 1
index2 += 1
elif n1 > n2:
index2 += 1
else:
index1 += 1
return inter
202.快乐数
题目:
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n 是 快乐数 就返回 true ;不是,则返回 false 。
示例1:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例2:
输入:n = 2
输出:false
提示:
1 <= n <= 231 - 1
c++代码实现
class Solution {
public:
int getNext(int n) {
int totalNum = 0;
// 拆分相加总和。
while (n > 0) {
int d = n % 10;
n = n / 10;
totalNum += d * d;
}
return totalNum;
}
bool isHappy(int n) {
int slow = n;
int fast = getNext(n);
// 快慢指针,如果相遇,证明有环,即不是快乐数
// 如果 n 是一个快乐数,即没有循环,那么快跑者最终会比慢跑者先到达数字 1。
// 如果 n 不是一个快乐的数字,那么最终快跑者和慢跑者将在同一个数字上相遇。
while (fast != 1 && slow != fast) {
slow = getNext(slow);
fast = getNext(getNext(fast));
}
return fast == 1;
}
};
python 代码实现
class Solution:
def getNext(self, n):
totalSum = 0
while n > 0:
n, digit = divmod(n, 10)
totalSum += digit * digit
return totalSum
def isHappy(self, n: int) -> bool:
slow = n
fast = self.getNext(n)
while fast != 1 and slow != fast:
slow = self.getNext(slow)
fast = self.getNext(self.getNext(fast))
return fast == 1
1.两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例3:
输入:nums = [3,3], target = 6
输出:[0,1]
提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
- 只会存在一个有效答案
进阶:你可以想出一个时间复杂度小于 O(n^2)
的算法码?
c++ 代码实现
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> map;
for (int i = 0; i < nums.size(); i++) {
auto it = map.find(target - nums[i]);
if (it != map.end()) {
return {it->second, i};
}
map[nums[i]] = i;
}
return {};
}
};
python 代码实现
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
num_dict = dict()
for i in range(len(nums)):
if target-nums[i] in num_dict:
return [num_dict[target-nums[i]], i]
num_dict[nums[i]] = i
return []