文章目录
20.有效的括号
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例1:
输入:s = "()"
输出:true
示例2:
输入:s = "()[]{}"
输出:true
示例3:
输入:s = "(]"
输出:false
提示:
1 <= s.length <= 104
s
仅由括号'()[]{}'
组成
c++ 代码实现
class Solution {
public:
bool isValid(string s) {
// 判断是否两两相对
int n = s.size();
if (n % 2 == 1) {
return false;
}
// 括号匹配
unordered_map<char, char> pair = {
{ ')', '(' },
{ '}', '{' },
{ ']', '[' }
};
// 利用栈后进先出,匹配
stack<char> sta;
for (char ch: s) {
// 是否已找到右边的键
if (pair.count(ch)) {
// 判断栈是否为空,第一个是否等于键值,返回false
if (sta.empty() || sta.top() != pair[ch]) {
return false;
}
// 删除
sta.pop();
}else{
// 压入栈
sta.push(ch);
}
}
// 是否为空,返回
return sta.empty();
}
};
python 代码实现
class Solution:
def isValid(self, s: str) -> bool:
sList = list(s)
n = len(sList)
if n % 2 == 1:
return False
# 挂号匹配
pair = {
')': '(' ,
']': '[' ,
'}': '{'
}
# 栈
stack = list()
for i in range(n):
ch = sList[i]
if ch in pair:
if not stack or stack[-1] != pair[ch]:
return False
stack.pop()
else:
stack.append(ch)
return not stack
1047删除字符串中的所有相邻重复项
题目
给出由小写字母组成的字符串 S
,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
1 <= S.length <= 20000
S
仅由小写英文字母组成。
c++代码实现
class Solution {
public:
string removeDuplicates(string s) {
int n = s.size();
if (n < 2) return s;
string newStr = "";
for (char ch: s) {
// 拿最后一个对比
if (newStr != "" && newStr.back() == ch) {
//两个相邻且相同的字母
newStr.pop_back();
}else{
// 字符串往后压入
newStr.push_back(ch);
}
}
return newStr;
}
};
python代码实现
class Solution:
def removeDuplicates(self, s: str) -> str:
sList = list(s)
n = len(sList)
newStr = []
for i in range(n):
ch = sList[i]
if len(newStr) !=0 and newStr[-1] == ch:
newStr.pop()
else:
newStr.append(ch)
return ''.join(newStr)
150逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +
、-
、*
、/
。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
注意 两个整数之间的除法只保留整数部分。
可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
c++ 代码实现
class Solution {
public:
int evalRPN(vector<string>& tokens) {
int n = tokens.size();
stack<int> sta;
for (int i = 0; i < n; i++) {
string num = tokens[i];
// 如果不是 + - * / 数字压入栈
if(num != "+" && num != "-" && num != "*" && num != "/") {
sta.push(stol(num));
} else {
// 一旦遇到 + - * / 运算符,计算两者运算。
int num2 = sta.top();
// 删除
sta.pop();
int num1 = sta.top();
sta.pop();
// 运算符只有一位
switch (num[0]) {
case '+': sta.push(num1 + num2); break;
case '-': sta.push(num1 - num2); break;
case '*': sta.push(num1 * num2); break;
case '/': sta.push(num1 / num2); break;
}
}
}
return sta.top();
}
};
python 代码实现
class Solution:
def evalRPN(self, tokens: List[str]) -> int:
n = len(tokens)
sta = list()
for i in range(n):
ch = tokens[i]
if (ch != "+" and ch != "-" and ch != "*" and ch != "/"):
sta.append(int(ch))
else:
num2 = sta[-1]
sta.pop()
num1 = sta[-1]
sta.pop()
if ch == "+":
sta.append(num1 + num2)
if ch == "-":
sta.append(num1 - num2)
if ch == "*":
sta.append(num1 * num2)
if ch == "/":
# 这里注意,只保留整数
sta.append(int(num1 / num2))
return sta[-1]