JAVA图算法(4种)-你都清楚吗?

12 篇文章 0 订阅

1.深度优先搜索(Depth-First Search)

深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的节点。在深度优先搜索中,从起始节点开始,沿着一个路径一直访问未访问过的节点,直到到达不能再继续前进的节点为止,然后回溯到前一个节点,继续探索其他未访问的分支。这样递归地遍历所有节点,直到所有节点都被访问过为止。深度优先搜索一般使用递归或栈来实现。

以下是使用Java实现深度优先搜索的示例代码,假设图的表示采用邻接表的形式:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

// 用于表示图的节点
class Node {
    int value;
    List<Node> neighbors;

    public Node(int value) {
        this.value = value;
        neighbors = new ArrayList<>();
    }
}

public class DepthFirstSearch {
    public static void dfs(Node start) {
        Stack<Node> stack = new Stack<>();
        stack.push(start);

        while (!stack.isEmpty()) {
            Node current = stack.pop();
            if (current != null && !current.visited) {
                current.visited = true;
                System.out.print(current.value + " ");

                // 将当前节点的未访问过的邻居节点入栈
                for (Node neighbor : current.neighbors) {
                    if (!neighbor.visited) {
                        stack.push(neighbor);
                    }
                }
            }
        }
    }

    public static void main(String[] args) {
        // 构造图
        Node node1 = new Node(1);
        Node node2 = new Node(2);
        Node node3 = new Node(3);
        Node node4 = new Node(4);
        Node node5 = new Node(5);

        node1.neighbors.add(node2);
        node1.neighbors.add(node3);
        node2.neighbors.add(node4);
        node3.neighbors.add(node4);
        node4.neighbors.add(node5);

        System.out.println("深度优先搜索结果:");
        dfs(node1);
    }
}

在上述代码中,我们通过Node类来表示图的节点,并使用邻接表来表示图。dfs方法实现了深度优先搜索算法。我们使用栈来辅助遍历节点,从起始节点开始,递归地遍历与之相邻的节点,直到所有节点都被访问过为止。

运行代码,你将看到深度优先搜索的结果。深度优先搜索算法在遍历整个图时可能会产生不同的遍历顺序,这取决于起始节点和图的结构。深度优先搜索在许多图问题中都有应用,例如图的连通性检测、路径搜索等。

2.广度优先搜索(Breadth-First Search)

广度优先搜索(Breadth-First Search,BFS)是一种图遍历算法,用于遍历或搜索图或树的节点。在广度优先搜索中,从起始节点开始,首先访问它的所有直接邻居节点,然后再依次访问这些邻居节点的邻居节点,依次进行层级遍历,直到遍历完所有节点。广度优先搜索通常使用队列来实现。

以下是使用Java实现广度优先搜索的示例代码,假设图的表示采用邻接表的形式:

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

// 用于表示图的节点
class Node {
    int value;
    List<Node> neighbors;

    public Node(int value) {
        this.value = value;
        neighbors = new ArrayList<>();
    }
}

public class BreadthFirstSearch {
    public static void bfs(Node start) {
        Queue<Node> queue = new LinkedList<>();
        queue.offer(start);
        start.visited = true;

        while (!queue.isEmpty()) {
            Node current = queue.poll();
            System.out.print(current.value + " ");

            // 将当前节点的未访问过的邻居节点入队列
            for (Node neighbor : current.neighbors) {
                if (!neighbor.visited) {
                    queue.offer(neighbor);
                    neighbor.visited = true;
                }
            }
        }
    }

    public static void main(String[] args) {
        // 构造图
        Node node1 = new Node(1);
        Node node2 = new Node(2);
        Node node3 = new Node(3);
        Node node4 = new Node(4);
        Node node5 = new Node(5);

        node1.neighbors.add(node2);
        node1.neighbors.add(node3);
        node2.neighbors.add(node4);
        node3.neighbors.add(node4);
        node4.neighbors.add(node5);

        System.out.println("广度优先搜索结果:");
        bfs(node1);
    }
}

在上述代码中,我们同样使用Node类来表示图的节点,并使用邻接表来表示图。bfs方法实现了广度优先搜索算法。我们使用队列来辅助遍历节点,从起始节点开始,逐层遍历与之相邻的节点,并依次将它们的邻居节点加入队列中。

运行代码,你将看到广度优先搜索的结果。广度优先搜索算法保证了从起始节点到每个节点的最短路径被优先遍历,因此在寻找最短路径或层级遍历等问题中具有广泛应用。

3.最短路径算法(Dijkstra’s Algorithm)

在图论中,寻找最短路径是一个常见的问题,有多种算法可以解决。以下是两种常用的最短路径算法:迪杰斯特拉算法(Dijkstra’s Algorithm)和弗洛伊德算法(Floyd’s Algorithm)。

1.迪杰斯特拉算法(Dijkstra’s Algorithm):

迪杰斯特拉算法用于找到从一个顶点到所有其他顶点的最短路径。该算法使用贪心策略,通过逐步找到最近的顶点来扩展最短路径。该算法适用于没有负权边的图。
这里提供一个简单的使用Java实现的示例:

import java.util.Arrays;

public class DijkstraAlgorithm {
    public static void dijkstra(int[][] graph, int start) {
        int n = graph.length;
        int[] distance = new int[n];
        boolean[] visited = new boolean[n];
        Arrays.fill(distance, Integer.MAX_VALUE);
        distance[start] = 0;

        for (int i = 0; i < n - 1; i++) {
            int minDist = Integer.MAX_VALUE;
            int minIdx = -1;

            for (int j = 0; j < n; j++) {
                if (!visited[j] && distance[j] < minDist) {
                    minDist = distance[j];
                    minIdx = j;
                }
            }

            visited[minIdx] = true;

            for (int j = 0; j < n; j++) {
                if (!visited[j] && graph[minIdx][j] > 0 && distance[minIdx] + graph[minIdx][j] < distance[j]) {
                    distance[j] = distance[minIdx] + graph[minIdx][j];
                }
            }
        }

        System.out.println("从节点 " + start + " 到其他节点的最短距离为:");
        for (int i = 0; i < n; i++) {
            System.out.println("到节点 " + i + " 的距离为 " + distance[i]);
        }
    }

    public static void main(String[] args) {
        int[][] graph = {
                {0, 4, 0, 0, 0, 0, 0, 8, 0},
                {4, 0, 8, 0, 0, 0, 0, 11, 0},
                {0, 8, 0, 7, 0, 4, 0, 0, 2},
                {0, 0, 7, 0, 9, 14, 0, 0, 0},
                {0, 0, 0, 9, 0, 10, 0, 0, 0},
                {0, 0, 4, 14, 10, 0, 2, 0, 0},
                {0, 0, 0, 0, 0, 2, 0, 1, 6},
                {8, 11, 0, 0, 0, 0, 1, 0, 7},
                {0, 0, 2, 0, 0, 0, 6, 7, 0}
        };
        int startNode = 0;
        dijkstra(graph, startNode);
    }
}
2.弗洛伊德算法(Floyd’s Algorithm):

弗洛伊德算法用于找到所有节点之间的最短路径。该算法通过动态规划的方式逐步更新最短路径,适用于有负权边的图。
这里提供一个简单的使用Java实现的示例:

import java.util.Arrays;

public class FloydAlgorithm {
    public static void floyd(int[][] graph) {
        int n = graph.length;

        for (int k = 0; k < n; k++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    if (graph[i][k] != Integer.MAX_VALUE && graph[k][j] != Integer.MAX_VALUE
                            && graph[i][k] + graph[k][j] < graph[i][j]) {
                        graph[i][j] = graph[i][k] + graph[k][j];
                    }
                }
            }
        }

        System.out.println("所有节点之间的最短距离为:");
        for (int i = 0; i < n

4.最小生成树算法(Prim’s Algorithm、Kruskal’s Algorithm)

最小生成树(Minimum Spanning Tree,MST)是图论中一个重要的概念,它是一个连通图的子图,包含原图中的所有顶点,但是只包含足以构成一棵树的边,且这些边的权重之和最小。最小生成树算法用于找到满足这一条件的最小生成树。

两种常用的最小生成树算法是:普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。

1.普里姆算法(Prim’s Algorithm):

普里姆算法从一个起始节点开始,逐步选择与当前生成树最近的未访问节点,并将最短边添加到生成树中,直到所有节点都被访问。该算法适用于稠密图。

这里提供一个简单的使用Java实现的示例:

import java.util.*;

public class PrimAlgorithm {
    public static List<Edge> primMST(int n, List<List<Edge>> graph, int start) {
        List<Edge> mst = new ArrayList<>();
        boolean[] visited = new boolean[n];
        PriorityQueue<Edge> pq = new PriorityQueue<>((e1, e2) -> e1.weight - e2.weight);
        visited[start] = true;
        pq.addAll(graph.get(start));

        while (!pq.isEmpty()) {
            Edge edge = pq.poll();
            if (!visited[edge.to]) {
                visited[edge.to] = true;
                mst.add(edge);
                pq.addAll(graph.get(edge.to));
            }
        }

        return mst;
    }

    static class Edge {
        int from;
        int to;
        int weight;

        public Edge(int from, int to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }
    }

    public static void main(String[] args) {
        int n = 5;
        List<List<Edge>> graph = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            graph.add(new ArrayList<>());
        }

        graph.get(0).add(new Edge(0, 1, 2));
        graph.get(0).add(new Edge(0, 3, 6));
        graph.get(1).add(new Edge(1, 0, 2));
        graph.get(1).add(new Edge(1, 2, 3));
        graph.get(1).add(new Edge(1, 3, 8));
        graph.get(1).add(new Edge(1, 4, 5));
        graph.get(2).add(new Edge(2, 1, 3));
        graph.get(2).add(new Edge(2, 4, 7));
        graph.get
2.克鲁斯卡尔算法(Kruskal’s Algorithm):

克鲁斯卡尔算法先将所有边按权重排序,然后逐个选择权重最小的边,若这条边的两个端点不在同一连通分量中,则将其添加到生成树中,直到所有节点都被访问。该算法适用于稀疏图。

这里提供一个简单的使用Java实现的示例:

import java.util.*;

public class KruskalAlgorithm {
    public static List<Edge> kruskalMST(int n, List<Edge> edges) {
        List<Edge> mst = new ArrayList<>();
        Collections.sort(edges, (e1, e2) -> e1.weight - e2.weight);
        int[] parent = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
        }

        for (Edge edge : edges) {
            int fromRoot = findRoot(parent, edge.from);
            int toRoot = findRoot(parent, edge.to);
            if (fromRoot != toRoot) {
                mst.add(edge);
                parent[fromRoot] = toRoot;
            }
        }

        return mst;
    }

    static int findRoot(int[] parent, int x) {
        while (parent[x] != x) {
            x = parent[x];
        }
        return x;
    }

    static class Edge {
        int from;
        int to;
        int weight;

        public Edge(int from, int to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }
    }

    public static void main(String[] args) {
        int n = 5;
        List<Edge> edges = new ArrayList<>();
        edges.add(new Edge(0, 1, 2));
        edges.add(new Edge(0, 3, 6));
        edges.add(new Edge(1, 2, 3));
        edges.add(new Edge(1, 3, 8));
        edges.add(new Edge(1, 4, 5));
        edges.add(new Edge(2, 4, 7));
        edges.add(new Edge(3, 4, 9));

        List<Edge> mst = kruskalMST(n, edges);
        System.out.println("Kruskal's 最小生成树:");
        for (Edge edge : mst) {
            System.out.println(edge.from + " - " + edge.to + " 权重:" + edge.weight);
        }
    }
}

这两种算法分别适用于不同类型的图,可以根据实际情况选择合适的算法来找到最小生成树。

更多算法关注公众号-扫地老僧
在这里插入图片描述

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西蓝花MQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值