题目
给定一个长度为 n+1 的数组nums,数组中所有的数均在 1∼n 的范围内,其中 n≥1。
请找出数组中任意一个重复的数,但不能修改输入的数组。
样例
给定 nums = [2, 3, 5, 4, 3, 2, 6, 7]。
返回 2 或 3。
思考题:
如果只能使用 O(1) 的额外空间,该怎么做呢?
方法一(使用了O(n)的空间):
class Solution {
public:
int duplicateInArray(vector<int>& nums) {
int n = nums.size();
int nums2[n]={}; //用此数组类存储重复的数字。 n个数,哪个重复 nums2[n]++
for(auto x: nums) {
nums2[x]++;
if(nums2[x] >= 2) {
return x;
}
}
}
};
方法二(时间复杂度O(n),空间复杂度O(1))
class Solution {
public:
int duplicateInArray(vector<int>& nums) {
int l = 1, r = nums.size()-1;
int mid = (l + r)/2; // 划分的区间:[l, mid], [mid + 1, r]
int s = 0;
while(l<r) {
for(auto x:nums) { //查看nums数组中每个数值大小在其中一个区间的个数。 如在[1, mid]中的数字有多少
if (x>=l && x<=mid)
s+=1;
if(s>mid-l+1) r=mid;
else l=mid+1;
}
return r;
}
};
心得
方法一: 利用nums2数组记录每个数的个数。 ++
方法二: 抽屉原理,逐渐缩小区间,查看n+1个空间n个数字,哪一侧多一个数字。
(分治,抽屉原理) O(nlogn)O(nlogn)
这道题目主要应用了抽屉原理和分治的思想。
抽屉原理:n+1 个苹果放在 n 个抽屉里,那么至少有一个抽屉中会放两个苹果。
用在这个题目中就是,一共有 n+1 个数,每个数的取值范围是1到n,所以至少会有一个数出现两次。
然后我们采用分治的思想,将每个数的取值的区间[1, n]划分成[1, n/2]和[n/2+1, n]两个子区间,然后分别统计两个区间中数的个数。
注意这里的区间是指 数的取值范围,而不是 数组下标。
划分之后,左右两个区间里一定至少存在一个区间,区间中数的个数大于区间长度。
这个可以用反证法来说明:如果两个区间中数的个数都小于等于区间长度,那么整个区间中数的个数就小于等于n,和有n+1个数矛盾。
因此我们可以把问题划归到左右两个子区间中的一个,而且由于区间中数的个数大于区间长度,根据抽屉原理,在这个子区间中一定存在某个数出现了两次。
依次类推,每次我们可以把区间长度缩小一半,直到区间长度为1时,我们就找到了答案。
复杂度分析
时间复杂度:每次会将区间长度缩小一半,一共会缩小 O(logn)O(logn) 次。每次统计两个子区间中的数时需要遍历整个数组,时间复杂度是 O(n)O(n)。所以总时间复杂度是 O(nlogn)O(nlogn)。
空间复杂度:代码中没有用到额外的数组,所以额外的空间复杂度是 O(1)O(1)。
作者:yxc
链接:https://www.acwing.com/solution/AcWing/content/693/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。