一、 zookeeper宕机与dubbo直连
dubbo既然做为分布式技术实现,那么不可避免的实际运行中会有各种各样的问题。就比如说搭建一个dubbo的服务工程,需要注册中心,监控中心,web控制管理服务,当然后两个也可以不搭建或者宕机的情况下是不影响我们项目运行的,但是注册中心做为服务发现与注册的一个重要环节,如果它出现问题会怎么样呢?下面就看下dubbo是怎么处理这种情况的
- zookeeper注册中心宕机,还可以消费dubbo暴露的服务。
直连:当zk注册中心宕机时,可以直接通过直连方式调用服务端,url–>服务端地址
@Reference(stub = “com.cjy.dubbo.service.impl.StudentServiceStub”,url = “127.0.0.1:20883”)
本地缓存:当客户端调用过服务端后,会缓存通讯地址,当zk宕机后可通过缓存通信
健壮性:
监控中心宕掉不影响使用,只是丢失部分采样数据
数据库宕掉后,注册中心仍能通过缓存提供服务列表查询,但不能注册新服务
注册中心对等集群,任意一台宕掉后,将自动切换到另一台
注册中心全部宕掉后,服务提供者和服务消费者仍能通过本地缓存通讯
服务提供者无状态,任意一台宕掉后,不影响使用
服务提供者全部宕掉后,服务消费者应用将无法使用,并无限次重连等待服务提供者恢复
高可用:通过设计,减少系统不能提供服务的时间;
二、集群环境下dubbo负载均衡配置
这个官网有详细说明
- 负载均衡情况时,dubbo提供的多种负载均衡策略,默认为 random随机调用
Random LoadBalance
随机,按权重设置随机概率。
在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。
RoundRobin LoadBalance
轮循,按公约后的权重设置轮循比率。
存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。
LeastActive LoadBalance
最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。
ConsistentHash LoadBalance
一致性 Hash,相同参数的请求总是发到同一提供者。
当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。算法参见: http://en.wikipedia.org/wiki/Consistent_hashing
缺省只对第一个参数 Hash,如果要修改,请配置 <dubbo:parameter key=“hash.arguments” value=“0,1” />
缺省用160 份虚拟节点,如果要修改,请配置
<dubbo:parameter key=“hash.nodes” value=“320” />
- 配置方式: @Reference(loadbalance = “roundrobin”)
缺省使用<dubbo:consumer>的loadbalance
负载均衡策略,可选值:random,roundrobin,leastactive,分别表示:随机,轮询,最少活跃调用
2.0.0以上版本
三、服务降级
1、服务降级
什么是服务降级?
当服务器压力剧增的情况下,根据实际业务情况及流量,对一些服务和页面有策略的不处理或换种简单的方式处理,从而释放服务器资源以保证核心交易正常运作或高效运作。
可以通过服务降级功能临时屏蔽某个出错的非关键服务,并定义降级后的返回策略。
2、降级方式:
- mock=force:return+null 表示消费方对该服务的方法调用都直接返回 null 值,不发起远程调用。用来屏蔽不重要服务不可用时对调用方的影响。
- mock=fail:return+null 表示消费方对该服务的方法调用在失败后,再返回 null 值,不抛异常。用来容忍不重要服务不稳定时对调用方的影响。
3、配置方式,一样可在 @Reference,@Service 中配置如上两个参数二选一
四、集群容错
在集群调用失败时,Dubbo 提供了多种容错方案,缺省为 failover 重试。
1、集群容错模式
Failover Cluster
失败自动切换,当出现失败,重试其它服务器。通常用于读操作,但重试会带来更长延迟。可通过 retries=“2” 来设置重试次数(不含第一次)。
重试次数配置如下:
服务端:<dubbo:service retries=“2” />
消费端:<dubbo:reference retries=“2” />
方法级别:<dubbo:reference>
<dubbo:method name=“findFoo” retries=“2” />
</dubbo:reference>
Failfast Cluster
快速失败,只发起一次调用,失败立即报错。通常用于非幂等性的写操作,比如新增记录。
Failsafe Cluster
失败安全,出现异常时,直接忽略。通常用于写入审计日志等操作。
Failback Cluster
失败自动恢复,后台记录失败请求,定时重发。通常用于消息通知操作。
Forking Cluster
并行调用多个服务器,只要一个成功即返回。通常用于实时性要求较高的读操作,但需要浪费更多服务资源。可通过 forks=“2” 来设置最大并行数。
Broadcast Cluster
广播调用所有提供者,逐个调用,任意一台报错则报错 [2]。通常用于通知所有提供者更新缓存或日志等本地资源信息。
2、集群模式配置
按照以下示例在服务提供方和消费方配置集群模式,cluster值多种选择
<dubbo:service cluster=“failsafe” />
或
<dubbo:reference cluster=“failsafe” />
五、整合hystrix
- 导入依赖
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>
spring-cloud-starter-netflix-hystrix
</artifactId>
</dependency>
- 开启注解服务:在Application类上增加@EnableHystrix来启用hystrix starter
@SpringBootApplication
@EnableHystrix
public class ProviderApplication {
}
- 配置服务提供端:在服务方法上添加:@HystrixCommand()
@HystrixCommand()
@Override
public Student getStudentById(Integer id) {
if(Math.random()>0.5) {
throw new RuntimeException();
}
return new Student(id,"张三--"+id,16,"zhangsan@126.com",180.1);
}
- 配置消费端:一样需要在主程序开启@EnableHystrix
- 配置消费调用:
@Service
public class TestServiceImpl implements TestService {
@Reference()
StudentService studentService;
@HystrixCommand(fallbackMethod = "error")//远程服务调用异常处理
@Override
public Student getStudentById(Integer id) {
return studentService.getStudentById(id);
}
@Override
public Student getStudentByName(String name) {
return studentService.getStudentByName(name);
}
//如下回掉方法需要与调用方法一样的参数否则会抱异常
//fallback method wasn't found: error([class java.lang.Integer])
public Student error(Integer id){
return new Student(id,"服务调用错误 ",15,"Hystrix代理服务容错",110.01);
}
}
注意:
- @HystrixCommand是方法级别的注解
- @HystrixCommand(fallbackMethod = “error”):回掉方法的参数必须与调用方法一致
其他属性留待后续。。
六、dubbo原理
- RPC原理
- 调用步骤介绍
一次完整的RPC调用流程(同步调用,异步另说)如下:
1)服务消费方(client)调用以本地调用方式调用服务;
2)client stub接收到调用后负责将方法、参数等组装成能够进行网络传输的消息体;
3)client stub找到服务地址,并将消息发送到服务端;
4)server stub收到消息后进行解码;
5)server stub根据解码结果调用本地的服务;
6)本地服务执行并将结果返回给server stub;
7)server stub将返回结果打包成消息并发送至消费方;
8)client stub接收到消息,并进行解码;
9)服务消费方得到最终结果。
RPC框架的目标就是要2~8这些步骤都封装起来,这些细节对用户来说是透明的,不可见的。
- netty通信原理
Netty是一个异步事件驱动的网络应用程序框架, 用于快速开发可维护的高性能协议服务器和客户端。它极大地简化并简化了TCP和UDP套接字服务器等网络编程。
BIO:(Blocking IO)
NIO (Non-Blocking IO)
Selector 一般称 为选择器 ,也可以翻译为 多路复用器,
Connect(连接就绪)、Accept(接受就绪)、Read(读就绪)、Write(写就绪)
Netty基本原理: