剑指offer-63:数据流中的中位数
大小堆的经典应用,利用大小堆求解一个不断更新的数组的中位数。核心是利用大根堆存储前0到n/2+1个小的数字,小根堆存储剩下大的数字,这样大根堆和小根堆的顶部就是中位数所需(奇数个就是大根堆顶,偶数个就是两堆顶均值)。须维护好两个堆中元素的个数关系,元素的大小关系,即大根堆的所有元素理应比小根堆的所有元素要小,如果违反了此规则,就需要进行元素的对换。
堆的时间复杂度为O(logn);具体代码如下:
class Solution {
public:
priority_queue<int> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap; //注意小根堆的定义
void Insert(int num)
{
max_heap.push(num);
if(min_heap.size() && max_heap.top() > min_heap.top()){ //1.大,交换
auto maxv = max_heap.top(), minv = min_heap.top();
max_heap.pop(), min_heap.pop();
max_heap.push(minv), min_heap.push(maxv);
}
if(max_heap.size() > min_heap.size() + 1){ //2.多,转移
min_heap.push(max_heap.top());
max_heap.pop();
}
}
double GetMedian()
{
if(max_heap.size() + min_heap.size() & 1) return max_heap.top();
return (max_heap.top() + min_heap.top()) / 2.0;
}
};