自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

the list

Nothing here.

  • 博客(12)
  • 资源 (7)
  • 收藏
  • 关注

原创 leetcode3:两数相加

两数相加1 代码(Java)题目: 给出两个非空的链表用来表示两个非负的整数。其中,它们各自的位数是按照逆序的方式存储的,并且它们的每个节点只能存储一位数字。如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。您可以假设除了数字 0 之外,这两个数都不会以 0 开头。知识点:链表:创建、修改(头和尾)思路:由于是逆序存储,所以直接可以计算。注意进位carry。1 代码(Java)/** * Definition for singly-linked list. *

2020-10-04 11:53:52 203 1

原创 leetcode2:宝石与石头

宝石与石头1 代码(Java)1.1暴力法1.2哈希2 代码(python)2.1暴力法2.2哈希题目:思路:a.暴力法遍历b.哈希存储搜索1 代码(Java)1.1暴力法class Solution { public int numJewelsInStones(String J, String S) { int jewelsCount = 0; int jewelsLength = J.length(); int stonesLen

2020-10-02 10:01:55 178

原创 leetcode1:二叉搜索树中的插入操作

二叉搜索树中的插入操作1.代码(Java)2.代码(python)思路:判断要插入的二叉树是否为空比较插入值和根节点的大小关系改变当前所比较节点的位置,继续比较1.代码(Java)/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} *

2020-09-30 10:02:51 225

转载 pycharm 远程执行服务器代码控制台输出乱码问题

==>第一步:设置本地环境变量---->修改pycharm.exe.vmoptions文件, 添加-Dfile.encoding=UTF-8将本地环境设置为UTF-8==>第二步:设置 File Encodings ---->File --> settings --> File Encodings --> I...

2019-03-28 14:49:16 518

原创 长度为0的数组

定义网络传输数据包为 class packet{     int size;     void data[0];}其中data的作用是? AA.维护数据包空间的连续性B.数据分割位C.指向独立的数据空间D.无任何作用解析:长度为0的数组的主要用途是为了满足需要变长度的结构体。此处要考虑到数组中边界对齐要求,若data声明成void类型,则data可以转换成任意类型,且data中的成员类型都相同,这...

2018-07-05 18:10:26 954

原创 ORA-12545: 因目标主机或对象不存在,连接失败

在安装plsql时,出现”ORA-12545: 因目标主机或对象不存在,连接失败“的问题。解决办法如下:1.检测主机名是否能被dns解析。在此处是可以的。2.检查C:\oraclexe\app\oracle\product\11.2.0\server\network\ADMIN路径下tnsnames.ora文件中的内容:XE =  (DESCRIPTION =    (ADDRESS = (PRO...

2018-07-04 10:20:31 22721 3

原创 设备管理

设备管理-数据传输控制方式程序控制方式:(程序查询方式)CPU介入,发出相应的指令(查询指令,查询数据传输完成情况),外设较为被动,不会主动反馈信息(传输完成状态)。效率低。程序中断方式:外设完成了数据的传输或发布,会发出中断,系统会做下一步处理,效率较高DMA方式:(直接存储)有DMA控制器,只要有外存和CPU的数据交换,控制器就会管控(监管),CPU只在开始时做一些介入,如初始化、安排好事务等...

2018-05-27 17:29:03 145

原创 数据库基础

三层模式-两级映射内模式:数据以什么格式存储到物理文件,如何优化。数据存放。物理级数据库映射:不改应用程序概念模式:表。根据业务、应用分。概念级数据库映射:改表,不改应用程序外模式:视图。处理之后显示、不要显示全部的信息、提高安全性、灵活性。用户级数据库数据库设计:整个设计过程的流程及每个阶段的产出物。需求分析:整个系统对数据的要求(产出物:数据流图、数据字典、需求说明书)概念结构设计:产出物:E...

2018-05-23 08:00:33 284

原创 PV操作

进程管理--PV操作临界资源:进程间需要互斥方式对其进行共享的资源,如打印机、磁带等临界区:每个进程中访问临界资源的代码段信号量:是一种特殊的变量,用于PV操作中PV操作:P:   S=S-1    当S<0时,将进程放入进程队列中等待V:  S=S+1   当S<=0时,从进程队列中取出进程...

2018-05-22 21:43:13 3062

原创 No suitable driver found for jdbc:oracle:thin:@localhost:1521:XE

  将ojdbc6.jar放在web-inf下的lib目录

2018-04-13 15:27:42 1320

原创 SQL和jdbc中进行模糊查询

String sql="select * from book where bookID like %?%";//错误:java.sql.SQLSyntaxErrorException: ORA-00911: 无效字符String sql="select * from book where bookID like '%?%'";//错误:java.sql.SQLException: 无效的列索引在S...

2018-04-07 15:54:20 2576 1

原创 java.lang.ClassNotFoundException: oracle.jdbc.oracledriver

环境:windows10, myeclispse2017, tomcat8.5.9(自带), jdk1.8.0_91web project,找不到驱动类:java.lang.ClassNotFoundException: oracle.jdbc.oracledriver.但是我已经将驱动包导入工程了,在仔细检查之后发现jdk环境变量的配置出现问题。重装jdk之后将环境变量配置如下:JAVA_HOM...

2018-04-07 14:06:36 2765

Index of _content_CVPR_2019_html.pdf

2019 CVPR 接受论文列表。

2019-08-07

PSMNet代码

Pyramid Stereo Matching Network (PSMNet)的代码。 Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The3DCNNlearnstoregularizecostvolumeusingstacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018.

2019-04-13

Robust Pseudo Random Fields for Light-Field Stereo Matching

Markov Random Fields are widely used to model lightfieldstereomatchingproblems. However,mostpreviousapproaches used fixed parameters and did not adapt to lightfield statistics. Instead, they explored explicit vision cues to provide local adaptability and thus enhanced depth quality. Butsuchadditionalassumptionscouldendupconfining their applicability, e.g. algorithms designed for dense light fields are not suitable for sparse ones. In this paper, we develop an empirical Bayesian framework—Robust Pseudo Random Field—to explore intrinsic statistical cues for broad applicability. Based on pseudo-likelihood, it applies soft expectation-maximization (EM) for good model fitting and hard EM for robust depth estimation. We introduce novel pixel difference models to enable such adaptability and robustness simultaneously. We also devise an algorithm to employ this framework on dense, sparse, and even denoised light fields. Experimental results show that it estimates scene-dependent parameters robustly and converges quickly. In terms of depth accuracy and computation speed, it also outperforms state-of-the-art algorithms constantly.

2019-04-13

SegStereo: Exploiting Semantic Information for Disparity Estimation

Disparity estimation for binocular stereo images finds a wide range of applications. Traditional algorithms may fail on featureless regions, which could be handled by high-level clues such as semantic segments. In this paper, we suggest that appropriate incorporation of semantic cues can greatly rectify prediction in commonly-used disparity estimation frameworks. Our method conducts semantic feature embedding and regularizes semantic cues as the loss term to improve learning disparity. Our unified model SegStereo employs semantic features from segmentation and introduces semantic softmax loss, which helps improve the prediction accuracy of disparity maps. The semantic cues work well in both unsupervised and supervised manners. SegStereo achieves stateof-the-art results on KITTI Stereo benchmark and produces decent prediction on both CityScapes and FlyingThings3D datasets.

2019-04-13

Pyramid Stereo Matching Network

Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in illposed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018. The codes of PSMNet are available at: https: //github.com/JiaRenChang/PSMNet.

2019-03-28

Stereo Processing by Semiglobal Matching and Mutual Information

Stereo Processing by Semiglobal Matching and Mutual Information (SGBM)论文原文

2019-02-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除