[ACL2016]End-to-end Relation Extraction using LSTMs on Sequence and Tree Structures

框架图解释了文章的思想:
1: 利用一个三层网络框架识别实体,实体用B(begin), I(Inside), L(Last), S(single), O(Outside)的表示, 第一层用BiLSTM更好的表示单词的语义,中间hidden层,输出层softmax, 输出层节点用的个数等于4×len(实体类型)+1,这个1的意思就是outside, 比如实体的类型有人名,就表示为B-PER, I-PER, L-PER, S-PER, 最后加一个 O。因为输出标签之间的依赖的,即I-PER依赖B-PER, 也就是说I-PER之前只能出现B-PER, 不会出现在其他标签的后面,所以输出层用上CRF效果会更好,如果输出标签之间的依赖关系不大,则大可不必用CRF, 效果不明显。
观察左侧实体识别部分可知, 当前标签的输出依赖于前一个标签,即B-PER转化为embedding传送给Yates标签识别过程的隐层,其实也就是变相利用了依赖关系。
2: 在图的右侧识别关系的时候利用了依存树的中的两个实体之间的最短依存树判断两个实体的关系。两个实体到最低父节点是两个独立的分支,用bilstm处理两个分支,加上一个隐层,最后softmax输出两个实体的关系。
该paper声称是joint,因为是用了参数共享,但是就joint的本质而言,这篇文章并不能称之为joint模型,因为实体的识别过程和关系的判断过程并没有交互的过程。
在acl2017的文章中《Going out on a limb:Joint Extraction of Entity Mentions and Relations without Dependeny》是是真正意义的join event extraction.
这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014221266/article/details/78064551
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值