PyTorch学习
PyTorch学习,基于各种视频教程。
ccccucu
这个作者很懒,什么都没留下…
展开
-
龙良曲PyTorch教程1. 基本数据类型
PyTorch没有对string的支持,我们使用其他方式处理string。 随机一个两行三列的Tensor: a = torch.randn(2, 3) 搬运到GPU上 0维: loss一般使用Dimension为0的标量。 Dim为1的张量 dim为1的张量一般用于: dim与size的区别: 如何得到dim为1的size呢: Dim = 2 的Tensor: 常用...原创 2020-03-14 22:29:43 · 913 阅读 · 0 评论 -
5. 多种方式实现两层神经网络
一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测y,使用L2 Loss。 这一实现完全使用numpy来计算前向神经网络,loss,和反向传播。 numpy ndarray是一个普通的n维array。它不知道任何关于深度学习或者梯度(gradient)的知识,也不知道计算图(computation graph),只是一种用来计算数学运算的数据结构。 import numpy as...原创 2020-03-03 19:57:35 · 1183 阅读 · 0 评论 -
4. PyTorch基础
Tensors Tensor类似与NumPy的ndarray,唯一的区别是Tensor可以在GPU上加速运算。 构建Tensor 导入 from __future__ import print_function import torch 构造未初始化的5x3矩阵 x = torch.empty(5, 3) print(x) 构建一个随机初始化的5x3矩阵 x = torch.ra...原创 2020-03-03 19:56:42 · 169 阅读 · 0 评论 -
3. PyTorch中Tensorboard的使用(训练过程可视化)
安装Tensorboard pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple SummaryWriter 首先定义一个SummaryWriter类的实例 writer = SummaryWriter("logs") 使用Ctrl+鼠标左键Ctrl + 鼠标左键Ctrl+鼠标左键点击SummaryWri...原创 2020-03-03 19:55:24 · 1133 阅读 · 0 评论 -
2. PyTorch中数据的读取 - Dataset
Dataset demo 前置基础知识 os库的使用 import os dir_path = "dataset/train/ants" img_path_list = os.listdir(dir_path) #此时img_path_list为文件列表 img_path_list[0] >>> 'xxx.jpg' ...原创 2020-02-27 21:42:54 · 3129 阅读 · 2 评论 -
1. PyTorch环境安装配置(Windows & gpu)
确定显卡驱动是否正确安装 下载cuda10.1(好像pytorch集成了cuda,所以好像不需要单独安装,但是为了稳我还是装了) 下载anaconda安装并配置环境变量 创建虚拟环境 conda create -n pytorch_gpu pip python=3.7 conda activate pytorch_gpu 使用中科大镜像下载pytorch conda confi...原创 2020-02-27 21:11:27 · 290 阅读 · 0 评论