归一化方法

本文介绍了两种常用的数据归一化方法:min-max标准化和0均值标准化(Z-score standardization)。min-max标准化通过线性变换将数据映射到0-1之间,而Z-score标准化则利用数据的均值和标准差,使数据转换为均值为0,标准差为1的标准正态分布。这两种方法在数据预处理中广泛应用,但min-max标准化在面对新数据时可能需要重新调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两种常用的归一化方法:

(1)min-max标准化
(2)Z-score标准化方法

1.min-max标准化(Min-Max Normalization)(线性函数归一化)


定义:也称为离差标准化,是对原始数据的线性变换,使得结果映射到0-1之间。
本质:把数变为【0,1】之间的小数。
转换函数:(X-Min)/(Max-Min)
如果想要将数据映射到-1,1,则将公式换成:(X-Mean)/(Max-Min)
其中:max为样本数据的最大值,min为样本数据的最小值,Mean表示数据的均值。
缺陷:当有新数据加入时,可导致max和min的变化,需要重新定义。


0均值标准化(Z-score standardization)


定义:这种方法给与原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1.
本质:把有量纲表达式变成无量纲表达式。
转换函数:(X-Mean)/(Standard deviation)

 

https://blog.csdn.net/program_developer/article/details/78637711

https://blog.csdn.net/zxd1754771465/article/details/73558103

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值