随机森林的优缺点

随机森林是一个用随机方式建立的,包含多个决策树的分类器。其输出的类别是由各个树输出的类别的众数而定。

随机性主要体现在两个方面:

  1. (1)训练每棵树时,从全部训练样本(样本数为N)中选取一个可能有重复的大小同样为N的数据集进行训练(即bootstrap取样);
  2. (2)在每个节点,随机选取所有特征的一个子集,用来计算最佳分割方式。
     

优点

  • 1、 在当前的很多数据集上,相对其他算法有着很大的优势,表现良好
  • 2、它能够处理很高维度(feature很多)的数据,并且不用做特征选择(因为特征子集是随机选择的)
  • 3、在训练完后,它能够给出哪些feature比较重要http://blog.csdn.net/qq_39303465/article/details/79232093
  • 4、在创建随机森林的时候,对generlization error使用的是无偏估计,模型泛化能力强
  • 5、训练速度快,容易做成并行化方法(训练时树与树之间是相互独立的)
  • 6、 在训练过程中,能够检测到feature间的互相影响
  • 7、 实现比较简单
  • 8、 对于不平衡的数据集来说,它可以平衡误差。
  • 9、如果有很大一部分的特征遗失,仍可以维持准确度。
  1. 表现性能好,与其他算法相比有着很大优势。
  2. 随机森林能处理很高维度的数据(也就是很多特征的数据),并且不用做特征选择。
  3. 在训练完之后,随机森林能给出哪些特征比较重要。
  4. 训练速度快,容易做成并行化方法(训练时,树与树之间是相互独立的)。
  5. 在训练过程中,能够检测到feature之间的影响。
  6. 对于不平衡数据集来说,随机森林可以平衡误差。当存在分类不平衡的情况时,随机森林能提供平衡数据集误差的有效方法。
  7. 如果有很大一部分的特征遗失,用RF算法仍然可以维持准确度。
  8. 随机森林算法有很强的抗干扰能力(具体体现在6,7点)。所以当数据存在大量的数据缺失,用RF也是不错的。
  9. 随机森林抗过拟合能力比较强(虽然理论上说随机森林不会产生过拟合现象,但是在现实中噪声是不能忽略的,增加树虽然能够减小过拟合,但没有办法完全消除过拟合,无论怎么增加树都不行,再说树的数目也不可能无限增加的。)
  10. 随机森林能够解决分类与回归两种类型的问题,并在这两方面都有相当好的估计表现。(虽然RF能做回归问题,但通常都用RF来解决分类问题)。
  11. 在创建随机森林时候,对generlization error(泛化误差)使用的是无偏估计模型,泛化能力强。
     

缺点:

  1. 随机森林在解决回归问题时,并没有像它在分类中表现的那么好,这是因为它并不能给出一个连续的输出。当进行回归时,随机森林不能够做出超越训练集数据范围的预测,这可能导致在某些特定噪声的数据进行建模时出现过度拟合。(PS:随机森林已经被证明在某些噪音较大的分类或者回归问题上回过拟合)。
  2. 对于许多统计建模者来说,随机森林给人的感觉就像一个黑盒子,你无法控制模型内部的运行。只能在不同的参数和随机种子之间进行尝试。
  3. 可能有很多相似的决策树,掩盖了真实的结果。
  4. 对于小数据或者低维数据(特征较少的数据),可能不能产生很好的分类。(处理高维数据,处理特征遗失数据,处理不平衡数据是随机森林的长处)。
  5. 执行数据虽然比boosting等快(随机森林属于bagging),但比单只决策树慢多了。
     
**Matlab 随机森林的基本介绍** 随机森林是一种集成学习方法,由多个决策树组成。每一棵树都基于训练数据的随机样本集构建,并且在构建过程中会从所有特征中随机选择一部分作为分裂节点的选择标准。这种方法综合了多个决策树的结果以提高预测准确性和稳定性。 **优点** 1. **泛化能力强**:随机森林通过整合多棵决策树的预测结果,降低了过拟合的风险,提高了模型对未知数据的预测能力。 2. **处理高维数据**:对于特征数量较多的数据集,随机森林的表现仍然优秀,因为它在每次构建决策树时只考虑部分特征,有助于减少维度效应。 3. **易于并行计算**:由于每个决策树独立于其他树构建,因此整个随机森林可以很容易地在多核处理器上并行运行,大大提高训练速度。 4. **缺失值处理**:随机森林内部包含了多个决策树,当有缺失值时,只需让每个决策树在构建过程中忽略相应的缺失特征即可,无需额外处理。 5. **非线性模式识别**:随机森林能够捕捉到复杂的非线性关系和交互作用,使得它在处理复杂数据集时更为有效。 **缺点** 1. **解释性较差**:尽管单个决策树较为容易理解,但整个随机森林模型则比较难以解读,因为它的决策过程涉及到了大量的决策树组合,这增加了理解模型内部机制的难度。 2. **计算资源消耗**:虽然随机森林可以利用并行计算,但在构建每棵决策树时仍然需要较大的计算资源,特别是当树的数量非常大时,可能会导致较高的时间成本和内存占用。 3. **内存占用**:随机森林生成的模型往往较大,这可能导致存储问题,尤其是在模型部署到资源受限设备(如移动设备)时。 4. **预测速度相对较慢**:相较于单个决策树模型,随机森林的预测速度通常较慢,尤其是当模型包含大量决策树时。 总的来说,随机森林是一个强大的机器学习工具,在很多应用场景下都能提供良好的性能。然而,根据特定任务的需求,开发者也应充分考虑其优缺点以及如何优化模型以适应实际环境。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值