普通的Dijkstra只能更新一个前驱节点和得到单源最短路径的距离。
那么如果有多条最短路径的话,那么就需要增加一些判断。主要是在dist[V]+<V,W><?dist[W]这个判断失效后,增加一个if(dist[V]+<V,W>==dist[W])的判断即可;这个判断面向所有的V的邻接节点,不管是否已经被收入到最短路径的集合中。因为如果W是从V发展得到的,那么此时已经在W点了,这个时候判断就会是dist[W]+<V,W>==dist[V],但是由于最短路径是递增的,因此如果W是由V发展的,那么dist[w]本身就比dist[v]大了,更何况加上了<V,W>,因此不会影响到从V发展过来的情况。
还有一种情况就是收入了V后,邻接点W也已经被收录了,那么容易知道,W因为已经被收录了,因此可以确定是最短路径;但是还有一个问题是可能由其他的最短路径,因此对W进行更新也是合理的(即使W被收录了)
bool Dijkstra( MGraph Graph, int dist[], int path[], Vertex S )
{
int collected[MaxVertexNum];
Vertex V, W;
/* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */
for ( V=0; V<Graph->Nv; V++ ) {
dist[V] = Graph->G[S][V];
if ( dist[V]<INFINITY )
path[V] = S;
else
path[V] = -1;
collected[