Wide & Deep

本文深入探讨谷歌2016年的Wide & Deep论文,讲解了wide模型在特征工程上的优势和deep模型的泛化能力,以及它们如何结合以平衡exploit和explore。此外,还介绍了模型的训练方法和预测公式,并简要提及实战应用。
摘要由CSDN通过智能技术生成

一、论文介绍

(一)简介

  • 这是2016年谷歌团队发表的一篇论文。

(二)wide 和 deep 的比较

  • wide:广泛应用于具有稀疏、大规模场景。组合特征有效且可解释性强,但需要很多特征工程,且对于未出现过的组合无法学习。
  • deep:需要较少的特征工程,泛化能力强,可以通过稀疏特征 embedding 学习到未出现过的特征组合。但容易过泛化,推荐不太相关的东西。
  • wide & deep:记忆和泛化的结合。

(三)memorization 和 generalization(EE问题)

  • memorization:exploit,学习频繁出现的特征组合,从历史数据中学习相关性。容易推荐和用户浏览历史相似的东西。
  • generalization:explore,基于相关性的传递,学习未出现过的特征组合。容易推荐不一样的,新的东西。

(四)模型结构
The spectrum of Wide & Deep models

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>