一、论文介绍
(一)简介
- 这是2016年谷歌团队发表的一篇论文。
(二)wide 和 deep 的比较
- wide:广泛应用于具有稀疏、大规模场景。组合特征有效且可解释性强,但需要很多特征工程,且对于未出现过的组合无法学习。
- deep:需要较少的特征工程,泛化能力强,可以通过稀疏特征 embedding 学习到未出现过的特征组合。但容易过泛化,推荐不太相关的东西。
- wide & deep:记忆和泛化的结合。
(三)memorization 和 generalization(EE问题)
- memorization:exploit,学习频繁出现的特征组合,从历史数据中学习相关性。容易推荐和用户浏览历史相似的东西。
- generalization:explore,基于相关性的传递,学习未出现过的特征组合。容易推荐不一样的,新的东西。
(四)模型结构