题目链接:HDU - 1151
主要思路:
这里拿一组样例来解释。
输入数据:
1
6
5
1 2
2 3
3 6
4 5
5 3
将有向图转化为二分图后,不难看出本题是求最小顶点覆盖。同时关注到题目中的一个条件(使得不止一个伞兵不会到达交叉点)。
算法正确性:一开始有m个独立的点,也就是m条独立的道路,每一个匹配就是把两条道路合为一条道路,故所求的最少所需的伞兵就为总路口数量减去最大匹配。
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#define M 125
using namespace std;
int chose[M];
bool used[M];
vector<int>way[M];
bool find(int now){//匈牙利算法求最大匹配
for(int i=0;i<way[now].size();i++){
int nxt=way[now][i];
if(!used[nxt]){
used[nxt]=1;
if(!chose[nxt]||find(chose[nxt])){
chose[nxt]=now;
return 1;
}
}
}
return 0;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
memset(chose,0,sizeof(chose));
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
way[a].push_back(b);//有向图转二分图
}
int ans=0;
for(int i=1;i<=n;i++){
memset(used,0,sizeof(used));
ans+=find(i);
}
printf("%d\n",n-ans);//求最小路径覆盖
for(int i=1;i<=n;i++)way[i].clear();
}
}