题目描述:
You are given two integers n and k. Find k-th smallest divisor of n, or report that it doesn't exist.
Divisor of n is any such natural number, that n can be divided by it without remainder.
Input
The first line contains two integers n and k (1 ≤ n ≤ 1015, 1 ≤ k ≤ 109).
Output
If n has less than k divisors, output -1.
Otherwise, output the k-th smallest divisor of n.
Examples
Input
4 2
Output
2
Input
5 3
Output
-1
Input
12 5
Output
6
Note
In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.
In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.
题目大意:
找<=n的第k个因子
解题思路:
扫描到sqrt(n),i是n的因子,则n/i一定也是n的因子,这样保证不会超时
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
LL n,k;
int main()
{
while(~scanf("%lld%lld",&n,&k))
{
vector <LL> v1,v2;
for(LL i=1;i*i<=n;i++)
{
if(n%i==0)
{
v1.push_back(i);
if(i*i!=n)
v2.push_back(n/i);
}
}
LL len=v1.size()+v2.size(),len1=v1.size(),len2=v2.size();
if(k>len)
printf("-1\n");
else
{
if(k<=len1)
cout<<v1[k-1]<<endl;
else
cout<<v2[len2-(k-len1)]<<endl;
}
}
return 0;
}