整数与浮点数二分算法

整数二分

作用为:利用二分搜索的思想。来找到一个数特殊数的左右边界。

例如: {1,2,3,3, 4,5,8,10}

找到值为3的左边界序号为1,右边界序号3。如何找到左右边界呢.

发现, 3的左边是 小于等于3的(性质1) 且 3的右边是大于等于3的(性质2)

步骤

image-20220113155442563## 模板

int x;//目标值
// 查找左边界
//查找大于等于/大于key的第一个元素
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1; //等于(l+r)/2
        if (a[mid]<x) l = mid+1; //目标值在区间左边,包括mid
        else r = mid;//目标值在区间右边
    }
    return l;
}
// 查找右边界
//查找大于等于key的最后一个元素
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1; //等于(l+r+1)/2
        if (a[mid]>x) r = mid - 1; //目标值在区间左边
        else l = mid;//目标值在区间右边,包括mid
    }
    return l;
}

二分模板题

https://www.acwing.com/problem/content/791/

浮点数二分

  • 不用考虑边界。
  • 循环条件终止有两个
    • 循环100次。相当于 / 2^n
    • r - l > eps // eps 表示精度,取决于题目对精度的要求

模板

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

或者

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    for(int i = 1; i<= 100 ; i++)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

例题

https://blog.csdn.net/RJ_theMag/article/details/107939302

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值