Deepseek可以发射一颗导弹到太阳然后返回吗?

「清华大学 deepseek 手册」链接:https://pan.quark.cn/s/8e298fb9276d

使用deepseek“怎么从地球发送一个导弹绕太阳一圈然后在返回地球,请列出具体的方程式”,

嗯,用户的问题看起来挺复杂的,需要让导弹绕太阳一圈然后返回地球。首先,我得确定用户到底想要什么。可能他们是在问如何计算这样的轨道,或者需要相关的物理方程。不过用户可能对航天动力学不太熟悉,所以需要详细解释步骤和涉及的方程式。

首先,导弹绕太阳一圈,那应该是一个围绕太阳的椭圆轨道,周期刚好是一年吗?不过地球的公转周期就是一年,所以可能需要让导弹的轨道周期与地球相同,或者调整到某个特定的周期,使得当导弹完成一圈后,地球刚好回到相遇的位置。或者,可能要考虑霍曼转移轨道或者其他类型的轨道转移。

然后返回地球的话,导弹需要调整轨道,使其与地球相遇。这时候可能需要考虑引力助推或者轨道交会的问题。不过具体怎么计算呢?

首先,基本的轨道力学方程,比如开普勒定律。开普勒第三定律联系轨道半长轴和周期,可以用来计算所需的轨道参数。公式是T² = (4π²/GM) * a³,其中T是轨道周期,a是半长轴,GM是太阳的重力参数。

要让导弹绕太阳一圈后返回地球,可能需要让导弹的轨道周期是地球的公转周期的整数分之一,或者某种分数,使得当导弹完成n圈时,地球刚好完成m圈,两者位置重合。比如,如果导弹的轨道周期是1年,那它绕太阳一圈后,地球也在原处,但这样可能无法返回,因为导弹需要与地球相遇。或者,可能需要让导弹的轨道周期稍微不同,这样在某个时间后两者相遇。

不过更可能的是,使用霍曼转移轨道,从地球的轨道出发,到达某个点后再返回。比如,从地球轨道出发,做一个椭圆轨道,远日点或近日点调整,使得返回时地球刚好到达相遇点。这种情况下需要计算转移轨道的参数,以及发射窗口,使得时间计算正确。

另外,返回地球的话,需要考虑地球的引力影响,可能需要进入地球的希尔球范围内,被地球引力捕获。这时候可能需要调整接近地球时的速度方向,以利用地球引力进行捕获,或者使用火箭制动。

方程式方面,可能需要涉及以下内容:

1. 霍曼转移轨道的计算,包括所需的Δv。转移轨道的半长轴,转移时间,以及如何计算两次速度变化。

2. 轨道周期匹配,确保导弹返回时地球处于正确的位置。这里可能需要轨道周期和相遇时间的同步方程。

3. 地球的引力影响,当导弹接近地球时,需要考虑相对速度,轨道摄动等。

可能还需要考虑相对运动的问题,比如在日心坐标系下,导弹和地球的位置随时间的变化,以及如何确保它们在某个时间点相遇。

具体步骤可能包括:

- 确定导弹的初始轨道,假设从地球出发,所以初始速度与地球公转速度相同(约29.78 km/s)。要进入绕太阳的椭圆轨道,可能需要改变速度,使轨道变为椭圆,其远日点或近日点调整,使得轨道周期适当。

- 计算这个椭圆轨道的半长轴,使得导弹绕行一周的时间加上转移时间等于地球绕行到相遇点的时间。或者,可能需要椭圆轨道的周期是1年,这样导弹绕行一圈后,地球刚好绕了一圈,但此时导弹需要处于与地球相遇的位置。不过如果导弹的轨道周期和地球相同,那么它们会在同一位置相遇吗?比如,如果导弹被发射到与地球相同的轨道上,但方向相反,那么可能一年后相遇,但这种情况不太实际,因为需要极大的速度变化。

或者,可能使用一个椭圆轨道,其周期为1年,但半长轴不同,这样轨道周期相同的情况下,轨道形状不同,但根据开普勒第三定律,半长轴相同的话周期才会相同。所以可能有问题。可能我的思路有误。

或者,如果导弹的轨道周期是地球的一半,那么导弹绕两圈时,地球绕一圈,这时候导弹可能回到出发点,但地球也回到了原位,这样相遇。但如何计算这样的轨道?

不过这可能更复杂,需要考虑轨道共振的情况。例如,轨道周期为地球的1/2,这样每两次绕行后,导弹与地球相遇。这时候半长轴可以通过开普勒第三定律计算:T_missile = T_earth / 2,所以 (T_missile / T_earth)² = (a_missile / a_earth)³ → (1/2)² = (a_missile / a_earth)³ → a_missile = a_earth * (1/4)^(1/3) ≈ 0.63 AU。这样的轨道半长轴比地球小,近日点可能更靠近太阳,远日点在地球轨道之外?或者椭圆轨道的半长轴是0.63 AU,但具体轨道参数需要确定。

但这样的话,导弹绕太阳两次的时间等于地球绕一次的时间,也就是一年。当导弹完成两次绕行后,地球刚好完成一次,两者回到初始位置,此时导弹需要调整轨道以返回地球。不过这样的轨道是否可行?

不过这可能只是其中一种情况,或者可能需要更一般的相位匹配条件。例如,导弹的轨道周期T_m和地球的T_e满足n*T_m = m*T_e,其中n和m是整数,这样在n圈后,导弹和地球会处于相同的相对位置。

不过更实际的可能是使用霍曼转移轨道,两次变轨:第一次变轨进入转移轨道,第二次变轨调整回地球轨道。但这里的目的是绕太阳一圈后返回,所以可能需要一个椭圆轨道,其远日点或近日点与地球轨道相交,并且轨道周期使得当导弹返回交点时,地球也到达该点。

例如,假设导弹发射到一个椭圆轨道,其远日点在火星轨道附近,而近日点在地球轨道。轨道周期需要刚好是1年,这样当导弹绕一圈后,地球也回到原来的位置,此时导弹在近日点与地球相遇。不过这样的话,根据开普勒第三定律,轨道周期为1年,半长轴应与地球轨道相同,也就是a = 1 AU,说明这是一个与地球相同的圆轨道,但椭圆轨道的话,半长轴相同,所以周期相同,但近日点和远日点不同。例如,如果半长轴是1 AU,那么椭圆轨道的周期是1年,即使其轨道是椭圆的。这样的话,当导弹完成一圈后,地球也完成一圈,两者在近日点相遇,此时导弹的速度需要与地球的速度匹配才能被捕获。

不过这可能不太现实,因为如果导弹的轨道是椭圆且半长轴为1 AU,那么其轨道周期确实是1年,但它在近日点的速度会高于地球的公转速度,所以相遇时相对速度较大,需要额外的Δv来调整,以便被地球引力捕获。

或者,可能需要一个具有特定半长轴的椭圆轨道,使得导弹绕行的时间加上地球绕行的时间差导致相遇。例如,假设导弹轨道的半长轴为a,周期为T,当导弹绕行一圈的时间T后,地球已经移动了T*ω_e(ω_e是地球的角速度,约2π/T_e,其中T_e=1年),所以需要两者的位置差为2π的整数倍,即T*ω_e ≡ 0 mod 2π,也就是T必须是地球年的整数倍。但这样的话,导弹的轨道周期必须是整数年,但这样半长轴会更大,比如如果T=2年,那么a³ = (GMsun/(4π²))*(2T_e)^2 → a = (4)^(1/3) AU ≈ 1.587 AU。这样的轨道远日点可能在2*1.587 - 1 AU ≈ 2.174 AU,也就是到火星轨道之外。

但这样导弹绕一圈需要两年,地球则绕了两圈,所以当导弹返回近日点时,地球在两年后的位置,而导弹需要此时与地球相遇。这可能比较复杂,需要更多的计算。

或者,考虑一个相位差的问题。例如,导弹发射时,需要确保当它绕太阳一圈后,地球已经移动到了相遇的位置。例如,假设导弹轨道周期为T,那么地球在时间T内移动的角度是θ_e = (2π/T_e)*T。而导弹绕行一周后的位置相对于发射时的角度是θ_m = 2π。要让两者相遇,需要θ_e - θ_m = 2πk,其中k为整数。即(2π/T_e)*T - 2π = 2πk → T*(1/T_e) -1 =k → T= (k+1)*T_e。所以导弹的轨道周期必须是T_e的整数倍加一?例如,k=0时,T= T_e,即一年,此时地球移动了θ_e=2π,导弹也绕了一圈,θ_m=2π,所以两者在同一个位置相遇。这可能就是之前的情况,需要导弹的轨道周期等于地球的,但轨道不同,导致相遇时速度差异大。

但如何让导弹进入这样的轨道呢?假设导弹从地球出发,所以初始位置和地球相同,速度需要调整到使轨道半长轴为1 AU,但形成椭圆轨道。例如,地球的轨道速度是v_e = sqrt(GMsun/a_e),其中a_e=1AU。如果导弹在发射时获得一个速度增量Δv,使其轨道变为椭圆,半长轴仍为1 AU,那么轨道周期仍为1年。此时,导弹的轨道虽然半长轴相同,但离心率不同,所以其速度在近日点和远日点不同。例如,如果导弹在发射时速度增加,那么轨道会变成椭圆,远日点在原地球轨道之外,而近日点在内侧。不过因为半长轴相同,所以周期仍为1年,绕行一圈后,导弹会回到出发点,此时地球也刚好到达那里,因此相遇。但此时导弹的速度可能不同,需要调整以被地球捕获。

不过这可能是一个可能的方案。那么具体的方程式包括:

1. 计算椭圆轨道的参数:半长轴a=1 AU,离心率e,根据发射速度v来确定。初始位置为地球轨道r=a_e=1 AU,速度v = v_e + Δv。这里的v_e是地球的公转速度,约29.78 km/s。要形成半长轴a=1 AU的椭圆轨道,速度v应满足:

v² = GMsun*(2/r - 1/a) = GMsun*(2/a_e -1/a_e) = GMsun/a_e = v_e² → 所以速度必须等于v_e,即圆形轨道。这意味着,如果发射速度不等于v_e,那么半长轴a会改变。例如,如果速度大于v_e,则半长轴会更大,导致轨道周期更长。这可能与之前的思路矛盾。

哦,这里可能我的错误。根据活力公式,v²/2 - GMsun/r = -GMsun/(2a)。当初始位置r=a_e=1 AU,如果发射速度v > v_e,则轨道半长轴a会大于a_e,导致周期更长。反之,如果v < v_e,则a更小,周期更短。所以,要让导弹的轨道周期为1年,即a=1 AU,必须发射速度等于v_e,即保持圆形轨道。但这样的话,导弹无法与地球相遇,因为两者在同一轨道上以相同速度运动,始终在一起。这显然不是用户想要的。

所以,这说明之前的思路有错误。可能必须让导弹的轨道周期不同,通过调整半长轴,使得在导弹绕行n圈后,地球绕行m圈,两者在发射点相遇。例如,n和m是整数,满足n*T_m = m*T_e,并且两者位置相同。根据开普勒第三定律,T_m² / T_e² = (a_m / a_e)³ → a_m = a_e*(T_m/T_e)^(2/3)。例如,若要让导弹绕行1圈的时间等于地球绕行2圈的时间,即T_m = 2*T_e,则a_m = a_e*(2)^(2/3) ≈ 1.587 AU。此时,导弹的轨道半长轴为1.587 AU,周期为2年。当导弹绕行1圈用了2年,此时地球绕了2圈,回到原位,导弹也回到出发点,相遇。但这样导弹需要2年才能返回,可能不符合用户的需求,但用户的问题没有说明时间限制。

不过用户的问题是要绕太阳一圈后返回,所以可能需要导弹的轨道周期刚好让它在绕一圈后,地球已经移动到了相遇的位置。例如,假设导弹轨道周期为T_m,那么当导弹返回出发点时,地球需要已经移动了Δθ = 2π*(T_m / T_e) - 2π = 2π(T_m/T_e -1)。要让这个角度等于2π的整数倍,即相遇时地球回到原位,所以必须T_m/T_e -1 = integer → T_m = (k+1)*T_e,其中k是整数。比如k=0,则T_m = T_e,此时导弹和地球同步,但需要同一轨道,这不行。k=1,则T_m=2*T_e,导弹绕一圈用两年,此时地球绕了两圈,回到原位,导弹也回到原位,相遇。此时导弹的轨道半长轴为(2)^(2/3) AU ≈1.587 AU。所以发射时需要将导弹加速到这样的轨道。

然后,导弹绕行两年后返回原位,与地球相遇。此时,导弹需要减速以被地球引力捕获,返回地球。但如何计算这个过程中的轨道参数?

可能的步骤:

1. 确定导弹的轨道周期T_m = (k+1)*T_e,这里假设k=1,T_m=2年。

2. 计算相应的半长轴a_m = a_e*(T_m/T_e)^(2/3) = 1 AU * (2)^(2/3) ≈1.587 AU。

3. 确定椭圆轨道的近日点和远日点。例如,假设椭圆轨道的近日点是地球轨道(1 AU),那么远日点r_a = 2a_m - r_p = 2*1.587 AU -1 AU = 2.174 AU。这需要发射时在近日点(地球位置)加速,使远日点达到2.174 AU。

但这样导弹的轨道周期是2年,绕一圈后返回1 AU点,此时地球已经绕了两圈,也回到原点,相遇。此时导弹在近日点的速度v_p可以通过活力公式计算:

v_p² = GMsun*(2/r_p - 1/a_m) = GMsun*(2/1 AU - 1/1.587 AU)。计算具体的数值:

GMsun ≈ 132712440000 km³/s²

1 AU = 149597870.7 km

所以:

2/r_p = 2/(1 AU) = 2 /149597870.7 ≈1.337e-8 km⁻¹

1/a_m = 1/(1.587*149597870.7) ≈1/(2.373e8) ≈4.213e-9 km⁻¹

所以v_p² = 132712440000 * (1.337e-8 -4.213e-9) ≈132712440000 * 9.157e-9 ≈1.215e+3 km²/s² → v_p≈34.87 km/s

而地球的公转速度v_e≈29.78 km/s。所以导弹在近日点的速度需要比地球快约5.09 km/s。因此,发射时需要给导弹一个Δv ≈5.09 km/s的速度增量,使其进入这个椭圆轨道。

两年后,导弹返回近日点,此时地球也在那里。此时,导弹需要减速到地球的速度,才能被地球引力捕获。此时需要的Δv减速量同样是5.09 km/s。这显然非常大,现实中可能无法实现,但对于理论计算来说是可行的。

不过这样的方案可能Δv太大,难以实用。或者可能需要利用引力辅助或其他方法减少燃料消耗,但用户可能只需要理论上的方程式。

总结一下,涉及的方程式包括:

1. 开普勒第三定律:T² = (4π²/GMsun) * a³ → a = (GMsun * T²/(4π²))^(1/3)

2. 活力公式:v² = GMsun*(2/r - 1/a)

3. 相位匹配条件:n*T_m = m*T_e,其中n和m为整数,确保相遇。

4. 速度增量Δv的计算:Δv = |v_p - v_e|

但用户的问题是如何发送导弹绕太阳一圈然后返回地球,所以可能还需要考虑导弹在返回地球时的轨道交会,比如如何调整轨道以进入地球的引力范围,并着陆。

可能还需要考虑相对速度的问题,当导弹返回地球附近时,需要速度与地球匹配,否则会飞掠而过。因此,需要计算必要的减速Δv,或者利用大气制动等方式。

所以,具体的步骤和方程式可能包括:

1. 确定导弹轨道的周期T_m,使得T_m = (k+1)/k * T_e,或者类似的共振条件,确保返回时地球在相遇点。

2. 计算轨道半长轴a_m,根据开普勒第三定律。

3. 计算椭圆轨道的近日点和远日点,基于半长轴和离心率。

4. 计算在发射点(地球轨道)需要的速度v_p,使用活力公式。

5. 计算所需的Δv = v_p - v_e。

6. 计算导弹绕行一周后,在返回地球时的速度v_p',此时需要减速Δv' = v_p' - v_e,以匹配地球速度,进入地球轨道或着陆。

不过这可能涉及两次速度变化:发射时的加速和返回时的减速。

但实际情况中,返回时如果导弹恰好在地球的位置,且相对速度为零,才能被地球引力捕获,否则需要调整。但相对速度不可能为零,因此可能需要计算如何进入地球的希尔球,并调整轨道。

不过这可能超出了基本方程式的范围,用户可能只需要轨道力学的基本方程,不需要详细考虑捕获过程。

综合以上分析,需要列出的方程式包括:

- 开普勒第三定律,用于确定轨道周期与半长轴的关系。

- 活力公式,计算轨道速度。

- 相位匹配条件,确保导弹返回时地球在正确位置。

- Δv的计算,用于变轨。

例如,假设选择导弹轨道周期为T_m=1年,但这样半长轴必须等于地球的轨道,即圆形轨道,这样导弹无法返回,因为始终与地球同行。所以必须选择T_m不同,例如T_m=1年*(m/n),其中m和n是整数,使得n*T_m = m*T_e,这样n圈后,导弹和地球相遇。

比如,若选择T_m = 1/2年,这样导弹绕两圈后,地球绕一圈,相遇。此时a_m = ( (T_m² * GMsun )/(4π²) )^(1/3) = a_e*(T_m/T_e)^(2/3) =1 AU*(0.5)^(2/3) ≈0.63 AU。这样的轨道近日点可能在0.63*(1 - e) AU,远日点在0.63*(1 + e) AU,需要确保近日点或远日点与地球轨道相交。

不过这可能变得复杂。或许更简单的情况是让导弹的轨道周期为1年,但椭圆轨道,半长轴1 AU,使得周期相同,但轨道不同,这样在一年后,导弹返回发射点,此时地球也回到该点,相遇。但此时导弹的速度与地球不同,需要调整。

例如,椭圆轨道的半长轴a=1 AU,离心率e,近日点r_p = a(1 - e) =1*(1 - e) AU,远日点r_a=1*(1 + e) AU。发射时,在地球轨道(r=1 AU)处,此时该点可能是远日点或近日点。

如果导弹在r=1 AU处以速度v进入椭圆轨道,该点作为远日点,则此时速度最小。根据活力公式:

v² = GMsun*(2/r -1/a) = GMsun*(2/1 AU -1/1 AU) = GMsun*(1/1 AU) = v_e² → v =v_e。这又回到了圆形轨道,矛盾。

所以,如果椭圆轨道的半长轴a=1 AU,则无论在轨道上哪一点,活力公式给出的速度都是圆形轨道速度,这显然不对。我的错误可能在于对椭圆轨道参数的理解。

实际上,椭圆轨道的半长轴a是轨道长轴的一半,而活力公式中的r是当前位置到太阳的距离。例如,在椭圆轨道的远日点,r = a(1 + e),此时速度v = sqrt(GMsun * (2/(a(1 + e)) - 1/a )) = sqrt(GMsun/a * (2/(1 + e) -1 )) = sqrt(GMsun/a * ( (2 - (1 + e))/(1 + e) )) = sqrt(GMsun/a * (1 - e)/(1 + e)) ). 在近日点,r = a(1 - e),速度v = sqrt(GMsun/a * (1 + e)/(1 - e)) ).

如果选择半长轴a=1 AU,那么椭圆轨道的周期确实是1年,但导弹在远日点和近日点的速度会不同。例如,如果发射时位于远日点(r=1 AU*(1 + e)),则必须满足a=1 AU,所以远日点r_a = a(1 + e) → 1 AU*(1 + e) = r_a,所以e = (r_a/a) -1,但a=1 AU,所以如果r_a=1 AU,则e=0,即圆形轨道。这说明如果半长轴a=1 AU,且导弹在r=1 AU处,那么该轨道只能是圆形的,否则半长轴不等于1 AU。这可能意味着,如果导弹的轨道是椭圆且半长轴a=1 AU,则地球轨道上的点(r=1 AU)必须是椭圆轨道的其中一个焦点(太阳的位置),所以当导弹经过r=1 AU时,可能是在轨道的其他点,比如如果椭圆轨道的近日点或远日点不是1 AU的话,这似乎矛盾,因为半长轴a=1 AU意味着轨道总长度为2a=2 AU,所以如果导弹的轨道包含r=1 AU的点,那这个点不一定是近日点或远日点。

可能我的思路有误,需要重新考虑。例如,椭圆轨道的半长轴为a,焦点在太阳,当导弹处于r=1 AU的位置时,这个点可以是椭圆轨道上的任意点,不一定是近日点或远日点。例如,假设椭圆轨道的半长轴a=1 AU,离心率e,那么当导弹经过r=1 AU时,该点距离太阳的距离r=1 AU= a*(1 - e²)/(1 + e*cosθ),其中θ是真近点角。这方程可能需要满足某种条件,但比较复杂。

或许更简单的方法是放弃让轨道周期与地球相同,而是设计一个转移轨道,使得导弹绕太阳一圈后,与地球相遇。例如,霍曼转移轨道,但霍曼转移通常用于两个圆形轨道之间的转移,比如地球到火星,但在这里可能需要不同的方法。

或者,考虑一个椭圆轨道,其轨道周期为T_m,使得导弹绕行一周后,地球在轨道上的位置领先或滞后某个角度,刚好等于导弹的轨道相位差,从而相遇。这需要解一个关于时间T_m的方程,使得T_m = T_e * (Δθ/(2π) + k),其中k是整数,Δθ是导弹绕行一周后地球需要移动的角度以到达相遇点。

例如,假设导弹发射时,地球在位置θ=0。导弹进入一个椭圆轨道,周期T_m。当导弹完成一圈回到θ=0时,地球已经移动到了θ_e = (T_m / T_e)*2π。要让两者相遇,需要θ_e ≡ 0 mod 2π,即T_m必须是T_e的整数倍。但这又回到了之前的结论,即T_m=k*T_e,导弹的轨道周期必须是地球年的整数倍。此时,导弹返回出发点时,地球也正好在那里,但导弹的速度是否匹配?

例如,取k=1,T_m=1年,此时导弹的轨道半长轴a=1 AU,与地球相同,但如果是椭圆轨道,则速度不同。然而,如果导弹的轨道半长轴a=1 AU,那么根据开普勒第三定律,无论离心率如何,周期都是1年。因此,导弹在椭圆轨道上运行一年后返回出发点,此时地球也在那里,但导弹的速度可能不同,导致相对地球有速度差。

例如,假设椭圆轨道的近日点r_p=0.8 AU,远日点r_a=1.2 AU,半长轴a= (0.8 +1.2)/2=1 AU,周期1年。导弹发射时位于r=1 AU,此时是轨道上的一个点,但不是近日点或远日点。一年后,导弹返回r=1 AU,此时地球也在这里,但导弹的速度v=sqrt(GMsun*(2/1 AU -1/1 AU))=sqrt(GMsun/1 AU)=v_e≈29.78 km/s,与地球速度相同?这不可能,因为椭圆轨道在r=1 AU处的速度应该不同。

哦,这里可能我的错误。根据活力公式,在椭圆轨道中,当距离为r时,速度v=sqrt(GMsun*(2/r -1/a))。如果a=1 AU,r=1 AU,那么v=sqrt(GMsun*(2/1 -1/1))=sqrt(GMsun*1/1 AU)=sqrt(GMsun/1 AU)=v_e,即圆形轨道速度。所以,如果导弹处于椭圆轨道但半长轴a=1 AU,在r=1 AU处的速度必须等于圆形轨道速度,这意味着该点要么是圆形轨道,或者椭圆轨道在该点的速度确实等于圆形轨道速度,但此时该点可能是一个拱点(近日点或远日点),否则椭圆轨道中只有这两个点的速度方向与位置垂直。

如果椭圆轨道的半长轴a=1 AU,但离心率e≠0,那么在r=1 AU处的点必须满足r = a*(1 - e²)/(1 + e*cosθ),其中θ是真近点角。假设在θ=90度时,r=1 AU,则:

1 AU =1 AU*(1 - e²)/(1 + e*0) →1 = (1 - e²)/1 →e=0,矛盾。所以,只有当e=0时,即圆形轨道,r=1 AU处所有点的距离都是1 AU。否则,在椭圆轨道中,除了两个拱点,其他点的r不等于a*(1±e)。所以,若导弹的轨道是椭圆且半长轴a=1 AU,但离心率e≠0,那么r=1 AU处只能是两个拱点中的一个,例如近日点或远日点。但此时,若半长轴a=1 AU,则近日点r_p = a(1-e) =1*(1-e),远日点r_a=1*(1+e)。要让r_p或r_a等于1 AU,必须有e=0,即圆形轨道。否则,例如,如果r_p=1 AU,则1 =1*(1 -e) →e=0,同样矛盾。因此,唯一的可能是椭圆轨道的半长轴a≠1 AU,但周期仍为1年,这不可能,因为周期由半长轴决定。

这说明,任何非圆形轨道,只要半长轴a=1 AU,其周期为1年,但这样的轨道必须是圆形,否则无法存在。因此,若要导弹的轨道周期为1年,且为椭圆轨道,这是不可能的。因此,之前的假设错误,必须重新考虑。

正确的方法是,要让导弹绕太阳一圈后返回地球,必须设计一个轨道,其周期T_m使得在时间T_m后,地球在轨道上的位置领先导弹的角度为2π的整数倍。例如,导弹的轨道周期T_m,在地球的时间T_m内,地球移动的角度为 (T_m / T_e)*2π。而导弹绕行一周,自身移动了2π。要让两者相遇,需要地球移动的角度减去导弹移动的角度等于2π的整数倍:

(T_m / T_e)*2π -2π =2πk → T_m/T_e -1 =k → T_m= (k+1)T_e

例如,k=0 → T_m=T_e=1年:此时,导弹和地球同步,但导弹必须在同一轨道,否则无法相遇。k=1 → T_m=2年:导弹绕一圈用2年,此时地球绕了2圈,领先2π*2 -2π=2π,即相遇。

所以,导弹的轨道周期为2年,半长轴a= (GMsun*(2*T_e)^2/(4π²))^(1/3) = ( (GMsun*T_e²)/(4π²) )^(1/3) * (2)^(2/3) = a_e * 2^(2/3) ≈1.587 AU。

然后,导弹的椭圆轨道半长轴为1.587 AU,周期2年。发射时,导弹从地球的位置(1 AU)出发,需要进入这个椭圆轨道。此时,地球的位置是出发点,导弹在发射后,沿着椭圆轨道运行,远日点可能在 2a -1 AU = 2*1.587 -1 =2.174 AU。

计算发射时需要的速度v_p:

v_p² = GMsun*(2/r -1/a) = GMsun*(2/1 AU -1/1.587 AU)

代入数值:

1 AU =1.495978707e8 km

GMsun=1.3271244e11 km³/s²

计算:

2/1 AU =2/(1.495978707e8) ≈1.337e-8 km⁻¹

1/1.587 AU=1/(1.587*1.495978707e8)≈1/(2.373e8)≈4.213e-9 km⁻¹

所以:

v_p²=1.3271244e11 * (1.337e-8 -4.213e-9) ≈1.3271244e11 *9.157e-9 ≈1.215e3 km²/s² →v_p≈34.87 km/s

地球的速度v_e≈29.78 km/s,所以需要的Δv=34.87 -29.78≈5.09 km/s

这显然是一个很大的速度增量,超过目前火箭的能力,但理论上是可能的。

两年后,导弹返回发射点(1 AU),此时地球也刚好绕太阳两圈,回到该点。此时,导弹的速度v_p同样是34.87 km/s,而地球是29.78 km/s,所以导弹需要减速Δv=5.09 km/s以匹配地球速度,进入地球轨道或返回地球。

总结方程式:

1. 开普勒第三定律:T² = (4π²/GMsun) * a³ → a = (GMsun * T²/(4π²))^(1/3)

2. 活力公式:v² = GMsun*(2/r -1/a)

3. 相位匹配条件:T_m = (k+1)*T_e,其中k为整数

4. 速度增量Δv = v_p -v_e,其中v_p由活力公式计算,v_e为地球公转速度

5. 返回时的减速Δv' =Δv同样需要5.09 km/s

因此,具体的方程式包括:

- 轨道半长轴:a = [ (T_m² * GMsun) / (4π²) ]^(1/3)

- 发射速度:v_p = sqrt( GMsun * (2/r_initial -1/a) )

- 地球速度:v_e = sqrt( GMsun / a_e )

- 所需Δv:Δv = v_p -v_e

- 返回时的Δv:Δv_return = Δv (相同数值,方向相反)

当然,这假设了理想情况,忽略其他行星的引力摄动、轨道平面调整、地球引力影响等。

要从地球发射导弹绕太阳一周后返回,需设计特定轨道并计算相关参数。以下是关键步骤和方程式:

1. 轨道周期与半长轴关系(开普勒第三定律)

确定导弹轨道周期 𝑇𝑚Tm​,使其满足相位匹配条件,即导弹绕行一周后与地球相遇:

𝑇𝑚=(𝑘+1)⋅𝑇𝑒(𝑘∈𝑍)Tm​=(k+1)⋅Te​(k∈Z)

例如,取 𝑘=1k=1,则 𝑇𝑚=2⋅𝑇𝑒Tm​=2⋅Te​(导弹周期为2年)。

根据开普勒第三定律,轨道半长轴 𝑎𝑚am​ 为:

𝑎𝑚=(𝐺𝑀⊙𝑇𝑚24𝜋2)1/3am​=(4π2GM⊙​Tm2​​)1/3

代入 𝑇𝑚=2𝑇𝑒Tm​=2Te​,且地球轨道半长轴 𝑎𝑒=1 AUae​=1AU,得:

𝑎𝑚=𝑎𝑒⋅22/3≈1.587 AU.am​=ae​⋅22/3≈1.587AU.

2. 椭圆轨道参数计算

假设导弹从地球轨道(𝑟=1 AUr=1AU)出发,进入半长轴 𝑎𝑚=1.587 AUam​=1.587AU 的椭圆轨道。近日点 𝑟𝑝rp​ 和远日点 𝑟𝑎ra​ 为:

𝑟𝑝=2𝑎𝑚−𝑟𝑎或𝑟𝑎=2𝑎𝑚−𝑟𝑝.rp​=2am​−ra​或ra​=2am​−rp​.

若发射点设为近日点(𝑟𝑝=1 AUrp​=1AU),则远日点为:

𝑟𝑎=2⋅1.587 AU−1 AU=2.174 AU.ra​=2⋅1.587AU−1AU=2.174AU.

3. 发射速度计算(活力公式)

导弹在近日点的速度 𝑣𝑝vp​ 需满足:

𝑣𝑝2=𝐺𝑀⊙(2𝑟𝑝−1𝑎𝑚).vp2​=GM⊙​(rp​2​−am​1​).

代入 𝑟𝑝=1 AUrp​=1AU、𝑎𝑚=1.587 AUam​=1.587AU 和 𝐺𝑀⊙≈1.327×1011 km3/s2GM⊙​≈1.327×1011km3/s2,计算得:

𝑣𝑝≈34.87 km/s.vp​≈34.87km/s.

地球公转速度 𝑣𝑒≈29.78 km/sve​≈29.78km/s,所需速度增量:

Δ𝑣=𝑣𝑝−𝑣𝑒≈5.09 km/s.Δv=vp​−ve​≈5.09km/s.

4. 返回地球的减速

导弹返回近日点时,需减速至地球速度以被捕获:

Δ𝑣return=5.09 km/s(方向相反).Δvreturn​=5.09km/s(方向相反).

5. 相位匹配条件验证

导弹绕行时间 𝑇𝑚=2 年Tm​=2年,地球在此期间绕行两圈,确保相遇。

总结方程式

  1. 轨道周期与半长轴

    𝑎𝑚=𝑎𝑒(𝑇𝑚𝑇𝑒)2/3.am​=ae​(Te​Tm​​)2/3.
  2. 发射速度

    𝑣𝑝=𝐺𝑀⊙(2𝑟𝑝−1𝑎𝑚).vp​=GM⊙​(rp​2​−am​1​)​.
  3. 速度增量

    Δ𝑣=𝑣𝑝−𝑣𝑒.Δv=vp​−ve​.
  4. 相位匹配

    𝑇𝑚=(𝑘+1)𝑇𝑒.Tm​=(k+1)Te​.

注意事项

  • 实际任务需考虑轨道倾角、地球引力摄动及燃料限制。

  • 所列方程假设理想二体问题,忽略其他天体影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值