一、引论
1.1 数值分析研究对象与特点
(1)数值分析定义:研究在计算机上解决问题的理论和数值方法。(计算机只能进行加减乘除四则运算和简单的函数计算,需要转换复杂函数)
(2)计算机解决实际问题的步骤:建立数学模型、选择数值方法、编写程序、上机计算
1.2 数值计算的误差
(1)用计算机进行实际问题的数值计算,往往求得的是近似解,都存在误差
上图为计算机解决科学与工程计算问题的过程,这其中会产生以下四方面的误差
模型误差:由实际问题形成数学模型时,忽略一些次要因素对问题进行简化所带来的误差
观测误差:建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度限制数据一般为近似值,即存在观测误差
截断误差:如泰勒展开计算时将后边部分进行截断,产生了截断误差
舍入误差:由于计算机的字长有限,只能对有限位数进行运算,超过的位数按一定规则舍入,产生“舍入误差”
(模型误差、观测误差不是数值分析讨论的内容,计算方法主要研究截断误差和舍入误差对计算结果的影响)
(2)误差的基本理论
误差是不可避免的,既要允许误差,又要控制误差。
误差经过传播与积累,小的误差可能产生严重的后果,犹如蝴蝶效应
例如,计算
,则初始误差
但在后面误差会迅速积累
若误差逐步递减,这样的算法称为稳定的算法。
1.3 绝对误差与相对误差
定义1 设x为准确值,为
的一个近似值,称
(
)=
-
为近似值
的绝对误差,简称误差,可简记为
。
因为准确值往往是未知甚至是无法知道的,因此
(
)=
-
往往也无法求出,而只能知道
(
)=
-
的某个上界,即
(
)称为
的绝对误差限或误差限。显然,准确值
的范围为
=
(理论上是唯一确定的,可能取正,也可能取负。
>0不唯一,
越小越具有参考意义)
误差限的大小不能完全表示近似值的好坏。
对于=15
2
=15
(
)=2 和 y=1000
5
=1000
(
)=5 ,虽然y的误差限大,但y的值却更精确。
定义2 设为准确值,
为
的一个近似值,称
为近似值的相对误差,可简记为
.
为近似值的相对误差限。
计算相对误差限,即计算,这其中,
为绝对误差线,真值
往往未知,因此可进行一下替换:
分别为代替相对误差和代替相对误差限,即在代替相对误差中用近似值来取代真值,在代替相对误差限中用近似值绝对值取代真值绝对值。
能够代替的条件为较小,这是因为
是
的平方集,所以可以忽略不计。
例:=15
(
)=2,可得其代替后的相对误差限为:
(
)=2/15=13.33%
=1000
(
)=5,可得其代替后的相对误差限为:
(
)=5/1000=0.5%
1.4 有效数字
定义前,先计算一个有关绝对误差的例子,从而理解有效数字
=3.1415926...
,分别取小数点后3/5、7位数字的近似值,求绝对误差
可见,经四舍五入取近似值,其绝对误差限将不超过其末尾数字的半个单位
定义:若为
的近似值,其绝对误差的绝对值不超过某一位数字的半个单位,而该位数字到
的第一位非零数字共有
位,则称用
近似
时具有
位有效数字,简称
有
位有效数字。
例:对于=3.1415926...
=3.14 有4位有效数字(0.0015926<0.5
0.01)
=3.14159 有6位有效数字(0.0000026<0.5
)
=3.1415只 有4位有效数字(0.0000926>0.5
)
的近似值
可表示成以下形式:
,其中
是0到0中的一个数字
(0.2300有4位有效数字。而00023只有2位有效数字,12300如果写成0.123则只有3位有效数字,数字末尾的0不能随意省去)
定理1. 若作为
的近似值的表达式为
,则
(1)若有n位有效数字,则其相对误差
瞒足
可知,有效位数越多,相对误差限越小。
(2)相反,若的相对误差瞒足
则至少有
为有效数字
1.5 数值运算的误差估计(一元函数)
数值运算中,参加运算的数若有误差,那么一定会影响到计算结果的准确性。
1.6 数值运算的误差估计(多元函数)