简单数学(关于素数判断和因数分解)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int P=1e9+7,M=1e6+5;


ll exgcd(ll a,ll b,ll &x,ll &y){
    if(!b){x=1;y=0;return a;}
    ll t=x-(a/b)*y;
    return exgcd(b,a%b,y,t);
}

inline ll gcd(ll x,ll y){
    while(y)y^= x^= y ^=x %=y;
    return x;
}

//快速幂
inline int fast(int b,int n){
    ll a=b,ans=1;
    while(n){
        if(n&1)ans=(ans*a)%P;
        a=1ll*a*a%P;
        n>>=1;
    }
}


//快速乘 
inline int Pre(ll x,ll n,ll mod){
    int res=0;
    x%=p;
    while(n){
        if(n&1)res=x+res%mod;
        x=(x+x)%p;
        n>>=1;
    }return res;
}


//我们要保证每个数只被它最小的质因子标记一次。
int check[M],prime[M],num,ans[M];
inline void init(int n){
    memset(check,0,sizeof(check));
    for(int i=2;i<=n;i++){
        if(!check[i])prime[++num]=i;
        for(int j=1;j<=num;j++){
            if(prime[j]*i>n)break;
            //记录最小质因子
            check[i*prime[j]]=prime[j];
            if(i%prime[j]==0)break;
        }
    }
}

//1e9因数分解
void solve_1e9_div(int n){
    while(check[n]){
        ans[++num]=check[n];
        n/=check[n];
    }ans[++num]=n; 
}


//对于1e18的质数判定
//利用费马小定理
//对于互质的整数x和质数p,
//x^p-1=1(mod p)
//但是它有一定的局限性 如341
//首先判掉2和偶数。
//我们可以考虑这个式子x^2≡1 (mod n)
//x^2-1 ≡0 (mod n)
//(x-1) (x+1) = kn
//由于0≤x <n如果n是一个质数,显然只能(x-1)|n或者(x+1)|n,也就是x=1,n-1。
//所以如果有一个x不是这两个数的解,则n一定不是质数。
//对于10^18以内的数,x取前9个质数就可以准确无误的判断了。

bool is_inv(int x,int p){
    ll a=x,u=p-1,res=1;
    while(u){
        ll nw=res;
        ll nx=nw*nw%p;
        if(nx==1&&nw!=1&&nw!=p-1)return 0;
        //x^2-1 ≡0 (mod n)
        //(x-1) (x+1) = kn
        //x=1,n-1; 
        if(u&1)res=res*a%p;
        a=a*a%p;
        u>>=1;
    }
    return res==1;//x^(p-1)%p==1
}
bool miller_rabin(ll n){
    if(n==2)return 1; 
    if(n<2||n%2==0)return 0; 
    //非常大的优化
    for(int i=1;prime[i]<n&&i<=20;i++){
        if(!is_inv(prime[i],n))return 0;
    }return 1;
}


//所以如果我们在(mod m)的意义下,随机生成一个序列。
//当序列长度为√m的时候,就有两个数相同。(生日悖论)
//如果我们要分解n,对于n的最小质因子,假设为p,那么在√p步之内,很可能找到两个数在(mod p)下同余。
//如果我们找到了两个数x_1和x_2,他们在模p下同余,却在模n下不同余,那么我们求 gcd(n,x_1-x_2),就找到一个质因子。
map<ll,int>res;
map<ll,int>::iterator it;


ll pollard_rho(ll n,ll c){
    ll x,y,d,i=1,k=2;
    x=rand()%n+1;
    y=x;
    while(1){
        i++;
        x=(Pre(x,x,n)+c)%n;
        //x[i+1]=x[i]*x[i]+c;来充当随机数组
        d=gcd(y-x,n);
        if(1<d&&d<n)return d;//找到了
        if(y==x)return n;//没有用
        if(i==k)y=x,k<<=1;//找到第2^k项为 y
    }
}


void div_(ll n,ll c){
    if(n==1)return;
    if(miller_rabin(n)){
        res[n]++;
        return;
    }
    ll p=n;
    while(p==n)p=pollard_rho(p,c--);
    div_(p,c);
    div_(n/p,c);
}

void solve_1e18_div(ll n){
    init(1e6);
    srand((int)time(0));
    res.clear(); 
    div_(n,(int)rand()+1e9); 
    if(res.empty())printf("%lld\n",n); 
    for(it= res.begin(); it!= res.end();){ 
        printf( "%lld^%d",it->first,it->second); 
        if((++it) != res.end())printf( " * " ); 
    } 
}
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值