暑假就在接触Tensorflow了,但是一直断断续续的,所以现在又开始捡起来继续学。
PS 我用的代码源于https://github.com/zhaozhengcoder/Machine-Learning 大佬写的很好,我也是跟着他的 代码,在他的代码上,写上 自己的理解。
"""
构造一个3层的网络
输入层一个结点,隐层10个结点,输出层一个结点
输入层的维度是[n,1]
隐层的维度是 [1,10]
输出层的维度是[10,1]
so,
权值矩阵的维度是:
weight1=[1,10]
bais1=[10,1]
weight2=[10,1]
bais2=[1,1]
"""
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
#我们给这一层加的权重是随机生成的
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
#创建 【in_size * out_size】的矩阵,服从正态分部
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
#创建偏移函数 【1*outsize】 +0.1
Wx_plus_b = tf.matmul(inputs, Weights) + biases
#这一步设置了内部函数式如何转化的,这里是 利用矩阵乘法 + 矩阵加法
#也就是可以理解线性函数
#
#tf.matmul是矩阵乘法
# input的矩阵【N * input__size】 * 【in_size * out_size】
# 返回 N * outsize
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# 构造一个数据集
x_data = np.linspace(-1,1,300)[:, np.newaxis]
#指定的间隔内返回均匀间隔的数字。即1 到 -1 间,300个数
#np.newaxis在【,】前面时,变为列扩展的二维数组 1*n
#np.newaxis在【,】后面时,变为行扩展的二维数组 n*1
#所以是 【300*1】
noise = np.random.normal(0, 0.05, x_data.shape)
#np.random.normal为高斯正态分布
#y_data = np.square(x_data) - 0.5 + noise
#y_data为 x**2 -0.5+ 噪声 noise
#模拟y=x**2
y_data = np.square(x_data)
# placeholder 占个位
xs = tf.placeholder(tf.float32, [None, 1]) # N * 1类型矩阵 ,N未知
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer 添加隐藏层(中间层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# 矩阵乘法 【N*1】 * 【1 * 10】 =N* 10
# add output layer,输出层
# 上一层的输出是这一层的输入
prediction = add_layer(l1, 10, 1, activation_function=None)
# N* 10 10*1 --》N*1
# the error between prediction and real data
#loss函数和使用梯度下降的方式来求解
#创建损失函数
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
#创建训练步骤
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# important step
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
#初始化
sess = tf.Session()
sess.run(init)
#开始运行
for i in range(1000):
# trainings
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
# 在带有placeholder的变量里面,每一次sess.run 都需要给一个feed_dict,这个不能省略啊!
print("loss : ",sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
#现在开始进行模拟
xx_data = np.linspace(-1,1,10)[:, np.newaxis]
yy_data = np.square(xx_data)
print(xx_data)
print("XX : ",sess.run(prediction, feed_dict={xs: xx_data, ys: yy_data}))