描述
给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行一个整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
一个整数,表示最短Hamilton路径的长度。
由于每个点都需要被经过而且只能被经过一次,所以我们可以很快想到一种朴素的算法:枚举+动态规划.即枚举每一种被经过点的情况,由枚举过的点更新.由于n比较小(n <= 20),所以我们可以考虑用二进制数来进行状态压缩(这篇题解的重点也是这个):首先开一个dp数组,dp[i][j].i是用来表示被经过点的状态的,如果i的二进制数的第a位是1,就表示第a个点被经过了;否则没有被经过.dp[i][j]就表示被经过点状态为i,并且当前处于第j个点的位置时的最短路径长度.(注意,点是从0到n-1编号的)
由于每个点只能被经过一次,所以第a个点被经过的情况就会由第a个点没有被经过的情况更新而来.举个例子,当处于第2个点时,(2)0101就会由(2)0001更新来.而更新dp[(2)0101][2]的dp[(2)0001][k]的第二维的参数k只能是0001中被经过的点,也就是数位上为1的地方.所以dp[(2)0101][2]就由dp[(2)0001][0]更新来.于是我们可以得出状态转移方程:dp[i][j] = max(dp[i][j], dp[i ^ (1 << j)][k] + w[k][j];
上代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 20
using namespace std;
int n, dp[(1 << maxn) + 5][maxn + 5];
int w[maxn + 5][maxn + 5];
inline int hamilton(){
memset(dp, 0x3f, sizeof dp);
dp[1][0] = 0;
for(register int i = 1; i < 1 << n; i++){
for(register int j = 0; j < n; j++) if((i >> j) & 1){//如果第j个点被经过
for(register int k = 0; k < n; k++) if(i ^ (1 << j) >> k & 1){//如果第j个点没有被经过时第k位上的数是1
dp[i][j] = min(dp[i][j], dp[i ^ (1 << j)][k] + w[k][j]);
}
}
}
return dp[(1 << n) - 1][n - 1];
}
int main(){
scanf("%d", &n);
for(register int i = 0; i < n; i++){
for(register int j = 0; j < n; j++){
scanf("%d", &w[i][j]);
}
}
register int ans = hamilton();
printf("%d\n", ans);
return 0;
}
状态压缩的基础~