位运算:最短Hamilton路径

12 篇文章 0 订阅
5 篇文章 0 订阅
本文介绍了一种解决特定图论问题的算法:求解从起点0到终点n-1的最短Hamilton路径。通过枚举+动态规划的方法,利用状态压缩技术,详细解释了如何在带权无向图中找到不重复不遗漏地经过每个点恰好一次的最短路径。
摘要由CSDN通过智能技术生成

描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行一个整数n。

接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。

对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

一个整数,表示最短Hamilton路径的长度。


       由于每个点都需要被经过而且只能被经过一次,所以我们可以很快想到一种朴素的算法:枚举+动态规划.即枚举每一种被经过点的情况,由枚举过的点更新.由于n比较小(n <= 20),所以我们可以考虑用二进制数来进行状态压缩(这篇题解的重点也是这个):首先开一个dp数组,dp[i][j].i是用来表示被经过点的状态的,如果i的二进制数的第a位是1,就表示第a个点被经过了;否则没有被经过.dp[i][j]就表示被经过点状态为i,并且当前处于第j个点的位置时的最短路径长度.(注意,点是从0到n-1编号的)

       由于每个点只能被经过一次,所以第a个点被经过的情况就会由第a个点没有被经过的情况更新而来.举个例子,当处于第2个点时,(2)0101就会由(2)0001更新来.而更新dp[(2)0101][2]的dp[(2)0001][k]的第二维的参数k只能是0001中被经过的点,也就是数位上为1的地方.所以dp[(2)0101][2]就由dp[(2)0001][0]更新来.于是我们可以得出状态转移方程:dp[i][j] = max(dp[i][j], dp[i ^ (1 << j)][k] + w[k][j];

上代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 20
using namespace std;

int n, dp[(1 << maxn) + 5][maxn + 5];
int w[maxn + 5][maxn + 5];

inline int hamilton(){
	memset(dp, 0x3f, sizeof dp);
	dp[1][0] = 0;
	for(register int i = 1; i < 1 << n; i++){
		for(register int j = 0; j < n; j++) if((i >> j) & 1){//如果第j个点被经过
			for(register int k = 0; k < n; k++) if(i ^ (1 << j) >> k & 1){//如果第j个点没有被经过时第k位上的数是1
				dp[i][j] = min(dp[i][j], dp[i ^ (1 << j)][k] + w[k][j]);
			}
		}
	}
	return dp[(1 << n) - 1][n - 1];
}

int main(){
	scanf("%d", &n);
	for(register int i = 0; i < n; i++){
		for(register int j = 0; j < n; j++){
			scanf("%d", &w[i][j]);
		}
	}
	register int ans = hamilton();
	printf("%d\n", ans);
	return 0;
}

状态压缩的基础~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值