Leetcode之最长有效括号

题目:

给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:

输入:s = ""
输出:0

提示:

0 <= s.length <= 3 * 104
s[i] 为 '(' 或 ')'

 

代码:

方法一——使用矩阵那一类的动态规划,结果超时,二维数组动态规划,时间空间复杂度O(n^2):

class Solution {
public:
    int longestValidParentheses(string s) {
        int len=s.length(),maxlen=0;
    //vector<vector<int>> v(len,vector<int>(len,0));
    int** v=new int*[len];
    for(int i=0;i<len;i++){
        v[i]=new int[len];
        for(int j=0;j<len;j++){
            v[i][j]=0;
        }
    }
    for(int i=1;i<=len;i++){
        for(int l=0;l<len-i+1;l++){
            int r=l+i-1;
            if(s[l]=='('&&s[r]==')'){
                if(l+1==r){
                    v[l][r]=1;
                }else if(v[l+1][r-1]==1){
                    v[l][r]=1;
                }else{
                    for(int m=l+1;m<r;m++){
                        if(v[l][m]==1&&v[m+1][r]==1){
                            v[l][r]=1;
                            break;
                        }
                    }

                }
            }
            if(v[l][r]==1){
                maxlen=max(maxlen,r-l+1);
            }
        }
    }
    return maxlen;
    }
};

方法二——一维数组动态规划,时间空间复杂度O(N):

class Solution {
public:
    int longestValidParentheses(string s) {
        int size=s.length();
    vector<int> dp(size,0);

    int maxVal=0;
    for(int i=1;i<size;i++){
        if(s[i]==')'){
            if(s[i-1]=='('){
                dp[i]=2;
                if(i-2>=0){
                    dp[i]=dp[i]+dp[i-2];
                }
            }else if(dp[i-1]>0){
                if((i-dp[i-1]-1)>=0&&s[i-dp[i-1]-1]=='('){
                    dp[i]=dp[i-1]+2;
                    if((i-dp[i-1]-2)>=0){
                        dp[i]=dp[i]+dp[i-dp[i-1]-2];
                    }
                }
            }
        }
        maxVal=max(maxVal,dp[i]);
    }
    return maxVal;
    }
};

想法:

一维数组动态规划,如果碰到了'(',dp[i]=0;如果碰到了')',如果他前面那个等于'(',那么dp[i]=i>=2?dp[i-2]+2:2; 如果他前面那个等于')',判断dp[i-1]是否大于0,如果大于0,那么如果i-dp[i-1]-1>=0且s[i-dp[i-1]-1]=='(',那么dp[i]=i-dp[i-1]-2>=0?dp[i-1]+2,dp[i-1]+2+dp[i-dp[i-1]-2];

重要的是想清楚递推关系式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值