排序——归并排序

基本思想:

    首先,将R[1]~R[n]看成n个长度为1的有序表,将相邻的有序表成对归并,得到n/2个长度为2的有序表;然后,再将这些有序表成对归并,得到n/4个长度为4的有序表,如此反复进行下去,得到一个长度为n的有序表。

    (与前面介绍的几种排序方法不同,归并排序需要用到一个和R同类型的辅助数组S)

算法关键步骤:

    1、定义两组归并算法

        merge(list R,list S,int a,int b,int c),

     它将有序表R[a]~R[b]和R[b+1]~R[c]归并到S[a]~S[c]中

     2、定义一趟归并算法

        mergepass(list R,list S,int &m)

     它将R中的有序表成对归并到S中。m是归并前R中第一个有序表的长度,一趟归并后m的值*2

     令m的初始值为1,在m<n的情况下,交替调用一趟归并算法mergepass(R,S,m)和mergepass(S,R,m)

代码:

//两组归并
void merge(list R,list S,int a,int b,int c)
{
  int i,j,k;
  i=a; j=b+1; k=a;
  while((i<=b)&&(j<=c)) 
    if(R[i].key<=R[j].key)
         S[k++]=R[i++];                   
    else S[k++]=R[j++];                           
  while(i<=b) S[k++]=R[i++];                  
  while(j<=c) S[k++]=R[j++]
} 
//一趟归并          
void mergepass(list R,list S,int &m)         
{                               
  int i=1,j;                     
  while(i+2*m-1<=n){  //相邻的两个有序表长度都是m
    merge(R,S,i,i+m-1,i+2*m-1);   
    i=i+2*m;                      
  }                              
  if(i+m-1<n)//剩下两个有序表,最后一个有序表长度小于m       
     merge(R,S,i,i+m-1,n);         
  else       //剩下一个有序表                         
     for(j=i;j<=n;j++) S[j]=R[j];                   
  m=2*m;                         
}
//归并排序
void mergesort()         
{                        
  list S;
  int m=1;
  while(m<n) {
    mergepass(R,S,m);
    mergepass(S,R,m);
  }
}

算法分析:

    对n个元素进行归并排序,需要经过log2n趟
归并,每一趟归并,其排序码比较次数不超过n–1,
元素移动次数都是n。
    因此,归并排序的执行时间是O(nlog2n)。
    归并排序是稳定的排序。 

MPI(Message Passing Interface)是一种用于并行计的编程模型和库。归并排序是一种经典的排序法,适合并行计。 在MPI中,可以通过发送和接收消息来实现进程间的通信。下面是一个基于MPI的归并排序的伪代码: ```python def parallel_merge_sort(data): # 获取进程总数和当前进程编号 size = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() # 计每个进程要处理的数据量 chunk_size = len(data) // size remainder = len(data) % size # 将数据分发到各个进程 if rank == 0: for i in range(size): if i < remainder: chunk = data[i * (chunk_size + 1):(i + 1) * (chunk_size + 1)] else: chunk = data[remainder + i * chunk_size:remainder + (i + 1) * chunk_size] MPI.COMM_WORLD.send(chunk, dest=i, tag=0) # 接收数据 chunk = MPI.COMM_WORLD.recv(source=0, tag=0) # 对本地数据进行排序 chunk.sort() # 归并排序 for step in range(size): # 计要交换数据的进程编号 partner = (rank + step) % size # 发送和接收数据 sendbuf = chunk recvbuf = MPI.COMM_WORLD.recv(source=partner, tag=step) if rank < partner: sendtag = step recvtag = step + size else: sendtag = step + size recvtag = step MPI.COMM_WORLD.send(sendbuf, dest=partner, tag=sendtag) chunk = merge(chunk, recvbuf) # 将排序好的数据返回 if rank == 0: result = [] for i in range(size): chunk = MPI.COMM_WORLD.recv(source=i, tag=size) result.extend(chunk) return result else: MPI.COMM_WORLD.send(chunk, dest=0, tag=size) ``` 在这个法中,首先将原始数据分发到各个进程,然后每个进程对本地数据进行排序,接着对每个步骤进行归并排序,并且使用MPI的send和recv函数进行交换数据。最后将排序好的数据返回到主进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值