整数拆分

题目描述

一个整数总可以拆分为2的幂的和,例如: 7=1+2+4 7=1+2+2+2 7=1+1+1+4 7=1+1+1+2+2 7=1+1+1+1+1+2 7=1+1+1+1+1+1+1 总共有六种不同的拆分方式。 再比如:4可以拆分成:4 = 4,4 = 1 + 1 + 1 + 1,4 = 2 + 2,4=1+1+2。 用f(n)表示n的不同拆分的种数,例如f(7)=6. 要求编写程序,读入n(不超过1000000),输出f(n)%1000000000。

输入描述:

每组输入包括一个整数:N(1<=N<=1000000)。

输出描述:

对于每组数据,输出f(n)%1000000000。
示例1

输入

7

输出

6

代码1:

思路:f(2m+1)=f(2m),f(2m)=f(2m-1)+f(m);对1000000内的每个项,算出值,装入数组中。优势是速度快。

#include<iostream>
#define MAXSIZE 1000001

using namespace std;

int main() {
	int n;
	int result[MAXSIZE];
	result[0] = result[1] = 1;
	for (int i = 2; i < MAXSIZE; i++) {
		if (i % 2 == 0) {
			result[i] = (result[i - 1] + result[i / 2]) % 1000000000;
		}
		else {
			result[i] = result[i - 1] % 1000000000;
		}
	}
	while (cin >> n) {
		cout << result[n] << endl;
	}

	return 0;
}

代码2:

思路:根据递归,优势是思路比较清晰,缺点是算法时间复杂度太高

#include<iostream>
#include<cmath>

using namespace std;

int total = 0;

void f(int a, int b) {

	if (b == 0||a<=1) {
		total += 1;
		return;
	}

	for (int i = 0; i <= b; i++) {
		
		int c = a - (int)pow(2, i);
		if(c>=0)
			f(a - (int)pow(2, i), i);
	}
}

int main() {
	int input;

	while (cin >> input) {
		int i = 0;
		total = 0;
		for (int num = 1; num <= input;) {
			num = num * 2;
			i++;
		}
		i--;
		f(input, i);
		cout << total << endl;
	}
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页